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A. The Bayes theorem

In principle, to �nd the optimal code one needs to opti-
mize the �tness functionH with respect to all its 2�m�s
degrees of freedom, the m � s entries of the encoder
e�i and the m � s entries of the decoder dj!, taking
into account the m conservation relations for the encoderP

i e�i = 1 and the s conservation relations for the de-
coder

P
! dj! = 1. However, although the degrees of

freedom of the encoder and the decoder are independent,
most encoder-decoder combinations would yield high dis-
tortion and therefore an improbable code. Instead, it proves
convenient to sum only over the most probable codes by
considering for each encoder e�i only the most probable
decoder dj! (This is somewhat similar to a saddle-point ap-
proximation). An optimal decoder must take into account
the knowledge about the encoder, that is if the encoder e�i
tends to encode the meaning ! as the symbol j then it
is likely that the decoder dj! will interpret j as !. The
mathematical manifestation of this intuitive observation is
through the Bayes theorem, P (j ! !) = P (j)P (jj!) =
P (!)P (jj!) = P (! ! j). For the present channel,
Bayes theorem can be expressed as

pjdj! = f!P (jj!); (1)

where P (jj!) =
P

i e!irij sums all the possible paths to
encode the meaning ! and to read it as the symbol j, and
pj =

P
�;i f�e�irij =

P
i uirij sums all the probabilities

to read the symbol j, starting from any meaning. Eq. 1
gives the optimal decoder as a function of the reader and
the optimal encoder [1, 2],

dj! =
f!
P

i e!irijP
�;i f�e�irij

: (2)

B. The optimal code

To calculate the optimal encoder (Eq. 4) we use the fol-
lowing Lagrangian,

HT = H+
X
�

��
X
i

e�i = �D���1I+
X
�

��
X
i

e�i;

(3)
which adds to the �tness H Lagrange multipliers for each
of them conservations

P
i e�i = 1. The distortion D and

the cost I in Eq. 3 are given by Eqs. 1-2,

D =
X
�;i;j;!

f�e�irijdj!c�!; (4)

I =
X
�;i

f�e�i ln
e�i
ui
;

where ui =
P

� f�e�i . The extremum of H that obeys
the constraints occurs at @HT=de�i = 0. To calculate this
extremum we need following derivatives,

@I

@e�i
= f� ln

e�i
ui
; (5)

@D

@e�i
= f�

X
m;


rimdm
c�
 +
X

�;k;m;


f�e�krkm
@dm

@e�i

c�
 ;

where the derivative of the decoder (given by Eq. 2) is

@dj!
@e�i

=
rij
pj
(f!��! � f�dj!) : (6)

The extremum is located at
@HT

@e�i
= � @D

@e�i
� ��1 @I

@e�i
+ �� = 0: (7)

Then, by substitution of Eqs. 4-6 into Eq. 7, while taking
into account the Bayes relation (Eq. 2), we �nd that the
optimal encoder is given by the Boltzmann-like distribution

e�i = uie
�(��=f��
�i); (8)

with the effective distortion energies


�i =
X

j;!
rijdj!

�
2c�! �

X


dj
c
!

�
: (9)

The normalization constants e���=f� are found by demand-
ing
P

i e�i = 1 for all � and, �nally, we obtain Eq. 4,

e�i =
uie

��
�iP
j uje

��
�j
: (10)
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Boltzmann partitions such as Eq. 10 (Eq. 4 in the text)
are common in rate-distortion theory [2�9], where func-
tionals similar toH are minimized to �nd an optimal chan-
nel. Expressions somewhat similar to Eqs. 9-10 have been
derived in the context of deterministic annealing and clus-
tering [2, 7, 9] by considering a canonical ensemble of bi-
nary encoders, e�i 2 f0; 1g, and calculating the mean-
�eld approximation for the maximum entropy [10�12] of
such ensemble with a distortion that plays the role of a
Hamiltonian.
The numerical solution of Eq. 4 is obtained by numerical

iteration of Eqs. 2, 9 and 10, in the spirit of the Blahut-
Arimoto algorithm [13, 14] (Matlab �les are available by
request). An example for such solution is shown in Fig. 2.

C. The critical coding transition

In this section we locate the critical coding/no-coding
transition (Eq. 5) by examining the Hessian of the �tness
H . At low values of the gain �, the system is the non-
coding state with e0�i = ui, where ui can be any arbitrary
probability distribution, ui 2 [0; 1] and

P
i ui = 1. The

non-coding decoder is obtained from the Bayes theorem
(Eq. 2), d0j! = f!. Since the encoder ui is independent
of the meanings �, it conveys no information and the cost
therefore vanishes, Inc = 0 (Fig. 2B). The only contri-
bution to the �tness at the non-coding state comes from
the distortion. This contribution is invariant with respect to
changes in ui and its invariant value is the average distance

Hnc = �Dnc = �
X
�;�

f�f�c��: (11)

To examine the stability of the �tness H , we expand it
around non-coding state up to second order in the variation
�e�i = e�i � e0�i = e�i � ui,

H ' Hnc �
1

2

X
�;i;!;j

Q�i!j�e�i�e!j; (12)

where the Hessian tensor is
Q�i!j= �(@2H=@e�i�e!j)nc. To calculate the Hessian
we need the following second derivatives

@2I

@e�i@e!j
= f��ij

�
��!
e�i

� f!
ui

�
; (13)

@2D

@e�i@e!j
= f�

X
m;


rim
@dm

@e!j

c�
 + f!
X
m;


rjm
@dm

@e�i

c!


+
X

�;k;m;


f�e�krkm
@2dm

@e�i@e!j

c�
 :

At the non-coding state, the �rst and the second derivatives

of the decoder with respect to the encoder are�
@dk

@e�i

�
nc

=
f
rik
pk

(��
 � f�) ; (14)�
@dk


@e�i@e!j

�
nc

=
rikrjk
pk

�

(2f�f!dk
 � f�f
�
! � f!f
�
�) ;
where pk =

P
�;m f�e�mrmk. By substitution of Eq. 14

in Eq. 13 we �nd that the Hessian at the non-coding state
is

Q�i!j = �
�

@2H

@e�i@e!j

�
nc

= (15)

= ��1
@2I

@e�i@e!j
+

@2D

@e�i@e!j
=

��1
�ij
ui
� f� (��! � f!) + 2

X
k

rikrjk
pk

�

f�f!(
X
�

f�c�! +
X



f
c�
 �
X
�;


f�f
c�
 � c�!):

For convenience, we scale the variation as �~e�i =p
f�=ui�e�i. The scaled Hessian becomes

~Q�i!j = �
�

@2H

@~e�i�~e!j

�
nc

= (16)

= ��1�ij

�
��! �

p
f�f!

�
� 2RijC�!;

where C�! is the normalized distance

C�! =
p
f�f!� (17) X

�

f�c�! +
X



f
c�
 �
X
�;


f�f
c�
 � c�!

!
;

and Rij is

Rij =
p
uiuj

X
k

�
rikrkjP
t utrtk

�
: (18)

To test whether the Hessian is positive-de�nite, it proves
convenient to express the vectors as a sum of the nor-
malized eigenvectors of ~Q, �~e =

P
n an�~e

(n), where
�~e(n) � �~e(t) = �nt. Then, the quadratic form is simply
�~ey ~Q �~e =

P
n �na

2
n. The eigenvalues �n depend on the

gain �. It follows that the critical point occurs exactly at
the lowest value of gain �c where one of the eigenvalues
(which may be a degenerate one) becomes non-positive. It
is evident from Eqs. 16-18 that the Hessian is a sum of two
tensor products

~Q = ��1Is �
�
Im � ~f

�
� 2R� C; (19)

where Is and Im are the identity matrices in the spaces of
symbols and meanings, respectively, and ~f�! =

p
f�f!.

An immediate result is that the eigenvectors of ~Q are also
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tensor products of eigenvectors in the spaces of symbols
and meanings,

�~e�i = �~e� � �~ei =
p
f��e� �

p
ui�ei: (20)

Since the variations must obey the conservation relations,P
i �e�i = 0, the symbol component of the eigenvector

obeys X
i

�ei =
X
i

p
ui�~ei = 0: (21)

The vector �~ei =
p
ui is an eigenvector ofRwith the max-

imal eigenvalue �maxR = 1, which corresponds to the uni-
form non-coding state. From Eq. 21 it follows that all the
relevant eigenvectors are orthogonal to

p
ui in the symbol-

space. Similarly, the vector �~e� =
p
f� is an eigen-

vector of the normalized distance C with the eigenvalue
�C = 0. It is easy to see that

p
f� is also an eigenvector

of
�
Im � ~f

�
with the same � = 0. Hence, all the relevant

eigenvectors are orthogonal to
p
f� in the meaning-space,X

i

p
f��~e� = 0: (22)

An immediate consequence of Eq. 22 is that (Im �
~f)�~e� = Im�~e� = �~e�. From all this we conclude that
the relevant eigenvalues of ~Q are

� ~Q = �
�1 � 2�R�C : (23)

Now, it is evident from Eq. 23 that the �rst eigenvalue to
turn negative is ��~Q = ��1 � 2��R��C , where ��C is the
maximal eigenvalue of the normalized distance C, and ��R
is the second-largest eigenvalue of R. This occurs exactly
at the critical gain (Eq. 5)

1

�c
= 2��R�

�
C : (24)

Both ��R and ��C are non-negative by the symmetry of C
and R, which ensures that �c is non-negative as well.
The reader is related to the graph-Laplacian �ij , which

describes random walk on the graph via misreading, rij =
�ij � �ij . When the non-coding state is uniform, e�i =
1=s, the critical gain is �c = (2(1����)2��C)�1, where ���
is the second-smallest eigenvalue of the graph-Laplacian.

D. The quasi-species model

In this section we derive the solution to the quasi-species
equation (Eqs. 6-7). The space of all possible codes is an
m � s�dimensional unit cube cube e�i 2 [0; 1] , where
each axis corresponds to an entry of the encoder matrix
e�i. Each point in this cube is an m � s�dimensional
radius-vector e�i that represents a possible code. The codes
are constrained to reside within the intersection of this unit
cube withm hyperplanes of dimension (m�1)�s, which
are de�ned by the m conservation relations

P
i e�i = 1.

The population is described in terms of a probability den-
sity	(e�i) that an organism would have the code e�i. The
quasi-species equation describes the dynamics of this prob-
ability density,

@	

@t
=
�
H(e�i)� �H

�
	+ �

X
�;i

@2	

@e2�i
: (25)

Eq. 25 is actually a linear reaction-diffusion equation
The reaction term

�
H(e�i)� �H

�
	 accounts for expo-

nential growth at a rate which is equal to the �tness
of the code H(e�i) (Here H is the Malthusian �tness).
This growth rate is H is normalized by the average �t-
ness �H =

R
	(e�i)H(e�i)de�i to conserve the proba-

bility distribution
R
	(e�i)de�i = 1. The diffusion term

�
P

�;i @
2	=@e2�i accounts for mutations that change the

code. This continuous approximation to the random walk
via mutations assumes that changes in the code are rela-
tively small �e�i � 1. This approximation is plausible for
molecular codes where the typical binding sites include a
dozen or so of DNA bases or amino-acids. In such code, a
point mutation in the binding site will change the binding
energies "�i and the binding probabilities only by little.
Typically, the probability distribution 	 approaches as-

ymptotically a steady-state @	=@t = 0, which repre-
sents a population of constant composition 	(e�i), or a
"quasi-species", that grows as a whole at a rate �H [15].
The growth rate is the maximal eigenvalue of the time-
independent solution of Eq. 25. To �nd this steady-state
we approximate the �tness in the vicinity of an optimum
H� by a quadratic expansion in the variation �e�i,

H ' H� �
1

2

X
�;i;!;j

Q�i!j�e�i�e!j; (26)

where the Hessian tensor is Q�i!j= �(@2H=�e�i�e!j)�.
Next, we assume the following Gaussian ansatz for 	,

	 = A
Y
�

�(
X
i

�e�i) exp(�
1

2

X
�;i;!;j

b�i!j�e�i�e!j);

(27)
where the ��functions take care of the conservation re-
lations and A is a normalization constant. To use stan-
dard Gaussian methods, it is convenient to write the
��functions as �(x) = lim
!1 (
=2�)

1=2
e�
x

2=2. Then
Eq. 27 can be rewritten as

	 = lim

!1

(2�)
�m�s=2

p
det~b� (28)

exp(�1
2

X
�;i;!;j

~b�i!j�e�i�e!j);

where ~b�i!j = b�i!j + 
��!. Substitution of Eq. 28 in the
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time-independent quasi-species equation (Eq. 25) yields
1

2

X
�;i;!;j

Q�i!j (h�e�i�e!ji � �e�i�e!j)+ (29)

+� lim

!1

 X
�;i

~b�i�i � (
X
!;j

~b�i!j�e!j)
2

!
= 0;

where h�e�i�e!ji is the population average h�e�i�e!ji =R
�e�i�e!j	de�i. This average is calculated by

h�e�i�e!ji = �2 lim

!1

(2�)
�m�s=2

p
det~b� (30)

@

@~b�i!j

Z
exp(�1

2

X
�;i;!;j

~b�i!j�e�i�e!j)de�i =

= lim

!1

@ log(det~b)

@~b�i!j
= lim


!1
~b�1�i!j:

By substitution of Eq. 30 into Eq. 29 we �nd that

b =

p
Qp
2�
; (31)

p
Q is the square root of the Hessian Q�i!j . The normal-

ization constant is found by equating the prefactors of the
Gaussians in Eqs. 27-28,

A = (2�)
�(m�1)�s=2

lim

!1


�m=2
p
det~b = (32)

= (2�)
�(m�1)�s=2

�Y
�Q

�1=4
;

where the product is overm � (s� 1) of the eigenvalues of
Q excluding them eigenvalues that correspond to uniform
eigenvector in the symbol-space. To conclude, from Eqs.
31-32 it follows that the steady-state distribution (Eq. 7) is

	 = A
Y
�

�(
X
i

�e�i)� (33)

exp

 
� (8�)�1=2

X
�;i;!;j

p
Q�i!j�e�i�e!j

!
:

Next, we calculate the reduction in the �tness (i.e.
growth rate) of the quasi-species due to the diffusive
widening of the Gaussian peak. We �nd that the leakage
by mutations from the optimal code to lesser codes reduces
the average �tness by an amount proportional to �1=2,

�H = H� �
1

2

X
�;i;!;j

Q�i!j h�e�i�e!ji = (34)

= H� � (�=2)1=2
X
�;i

p
Q�i�i

= H� � (�=2)1=2Tr
p
Q

= H� � (�=2)1=2
X
�;i

p
�Q;

where the sum is over the square roots of all the eigenvalues
of Q. At the coding transition (Eq. 24), one or more of
the eigenvalues �Q vanish, and the Gaussian distribution
	 becomes in�nitely wide in the direction of the emergent
coding eigenvector �e��i.

E. Effects of genetic drift

To include the stochastic effects of genetic drift we con-
sider a family of models, in which the typical dynamics
exhibits long periods of time when the population resides
in the neighborhood of �tness maxima separated by rela-
tively fast transitions by genetic drift between the maxima.
Neglecting the �ne details of the diffusive transitions, we
can regard the dynamics as instantaneous random transi-
tions between �tness maxima, which play the role of en-
ergy levels. This type of dynamics has been analyzed in
detail in [16] and in the context of TRNs in [17]. The
common mathematical property to this family of models
is that the ratio of the transition rates forward !12 and
backward !21 between two maxima, H1 and H2, depends
only on the ratio of a �tness "potential" U(H) at these two
points, !12=!21 = U(H1)=U(H2). One such example is
Kimura's process [18], where the transition rate is

!12 = n�
1� e�2(H2�H1)

1� e�2n(H2�H1)
; (35)

with the population size n and the mutation rate � between
states 1 and 2. For this model, !12=!21 = e2(n�1)(H1�H2),
with a Boltzmann-like potential U(H) = e2(n�1)H . Then,
if the system is ergodic, i.e. there is a mutation path be-
tween any two states, it reaches an asymptotic equilibrium
state, in which the population is partitioned according to a
Boltzmann exponential 	 � e2(n�1)H . In this distribution
the �tnessH plays the role of (minus) the Hamiltonian and
population size n is the "inverse temperature" � = 1=T
(up to a prefactor that depends on the speci�c model) [16].
One can then formalize an equivalent of a free-energy,

F = h�Hi � n�1S = �
Z
	(e�i)H(e�i)de�i (36)

+ n�1
Z
	(e�i) ln	(e�i)de�i;

where the entropy S = �
R
	 ln	de�i measures the ran-

domness due to genetic drift.
A mean-�eld estimate gives an expression that is prac-

tically equivalent to the free energy of a Potts model (e.g.
[19]). The "energy" term is (minus) the �tness at the aver-
age code, �e�i =

R
e�i	(e�i)de�i. The entropy S is due

to the usual
P

i �i ln�i mixing term, where the fractions
are �i = f��e�i and there are m such sums, one for each
meaning � (Eq. 8),

F = �H(�e�i) + n�1
X
�;i

f��e�i ln f��e�i; (37)

We can now calculate the effect of the genetic drift entropy
S on the coding transition. As in section C we examine the
stability of the free energy F by examining its Hessian,

K�i!j=

�
@2F

@e�i�e!j

�
nc

= �
�

@2H

@e�i�e!j

�
nc

(38)

+n�1
�

@2S

@e�i�e!j

�
nc

= Q�i!j + n
�1 f�
ui
��!�ij;
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where Q�i!j is given by Eq. 15. Again, we transform the
Hessian into scaled coordinates �~e�i =

p
f�=ui�e�i and

obtain

~K�i!j =

�
@2F

@~e�i�~e!j

�
nc

= ~Q�i!j + n
�1��!�ij; (39)

where ~Q�i!j is given by Eq. 16. Since the additional term
n�1��!�ij is diagonal, we can use the same procedure that
follows Eq. 19, and easily �nd the criticality condition,

1

�c
+
1

nc
= 2��R�

�
C : (40)

This equation indicates four possible pathways towards the
coding transition: (i) increasing the gain k (ii) increasing
the population n (iii) increasing the accuracy of the reader
(increasing ��R) and (iv) increasing the distance (which
amounts to increasing ��C).
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