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Abstract

We use a model of fluctuating networks to link the structure and thermodynamics of two, linearly aggregating,

self-assembling systems, microemulsions and dipolar fluids. In the linear aggregation regime, these two systems

that consist very different molecular building blocks, exhibit the same basic thermodynamic and structural fea-

tures.

By modeling microemulsions as fluctuating networks made of interconnected cylinders of oil-in-water or water-

in-oil with amphiphilic molecules at the interfaces, we explained their unique thermodynamics, especially the

observation of re-entrant phase separations and associated critical points. We show that the interplay between

entropy and structure, governed by the statistics of the topological defects, the junctions and “dead-ends” of

the network, provides an explanation for the observed universality of both the structure and phase behavior.

The theoretical predictions are in agreement with the thermodynamic measurements and with direct, cryo-TEM

observations of the network structures.

Our analysis suggests that the same concept of fluctuating networks may resolve the intriguing question con-

cerning the existence of the usual liquid-gas transition in dipolar fluids. We predict a defect induced, critical

phase separation that replaces the usual liquid-gas transition driven by the isotropic aggregation of particles. Our

model explains for the branched structures, the unusually low critical temperature and density, and the two-phase

coexistence “islands” that have been recently observed in simulation.
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Introduction

1.1 Self-Assembly of Soft Matter

Soft matter refers to materials that are much more deformable than ordinary solids or fluids. Even rela-

tively weak forces, such as those involved in Brownian motion, are usually sufficient to significantly dis-

tort their structure. An extensively studied class of soft materials are systems of amphiphiles, molecules

consisting of hydrophilic (water soluble) polar or charged groups covalently bonded to hydrophobic

(water insoluble) hydrocarbon chains. Two examples of amphiphiles are surfactants (soaps) and lipids,

the main constituent of cell membrane [1, 2]. The physical properties of soft matter vary strongly when

observed on different length scales. Typically, the molecules of soft matter are grouped together within

larger, more complex structures, such as polymers formed by covalent bonding of monomers, or micelles

formed by the hydrophobic interaction between surfactant molecules and the surrounding water. On mi-

croscopic length scales, the relative motion of the elementary molecules within such aggregates is fairly

constrained. By contrast, on mesoscopic length scales, the set of molecules forming each aggregate can

move collectively, via center-of-mass diffusion or long wave-length fluctuations. The basic constituents

or “particles” of these complex fluids, as they are sometimes called because of their large-scale, fluid-like

properties, are not the individual molecules but the aggregates that they form [3, 4].

The softness of matter is deeply related to this complexity. The strength of a certain material is

quantitatively characterized by its elastic moduli that scale like e ∼ E/Ld, where E and L are the typical
inter-particle interaction energy and distance, respectively, and d is the dimensionality. In ordinary 3-

dimensional atomic solid, the typical distance is of a few angstroms and the typical bond energy is

0.1 − 1eV (this cohesive energy is large for ionic bonds and smaller for hydrogen or van der Waals

bonds). This results in an elastic moduli of order e ∼ eV/Å3 [6]. In complex fluids, however, the typical
distance between the large aggregates is mesoscopic, L ∼ 102 − 104Å, which decreases the strength
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by 4-10 orders of magnitude. Moreover, the energy scale of inter-aggregate forces is typically much

lower than the eV energy scale of molecular forces, further increasing the deformability of soft matter

[10]. When the energy scale of interaction exceeds kBT , the energy scale of thermal fluctuations, the

system overcomes the entropic tendency to homogenize and the basic aggregates self-organize and create

large-scale, global order.

Self-assembly (or self-organization) occurs when the structure is determined not by external forces in

an a priori manner, but rather by internal interactions [3]. In equilibrium, it arises from the interplay be-

tween a structure-dependent energy and the thermal fluctuations that drive the self-assembling system

towards a state of maximal entropy. Non-equilibrium self-assembly may be driven by kinetic processes

such as diffusion limited aggregation of colloidal particles [11, 12]. The properties of self-assembling sys-

tems are governed by their collective behavior, in contrast to “simpler” systems, whose basic properties

can be understood in terms of two-body interactions. The large-scale properties of self-assembling sys-

tems are mainly affected by their universal, geometrical characteristics and less by the chemical details.

A prominent example for the collective self-organization is the rich variety of ordered structures exhib-

ited by amphiphilic interfaces [13, 14] and diblock copolymers [15, 16, 17], such as lamellar, hexagonal

and cubic phases. The similarity of structures and phase diagrams between these two systems, of very

different microscopic building blocks, indicates the influential role of universal properties that govern

the thermodynamics of self-assembly. In non-equilibrium systems, another manifestation of this material

independent universality is the fractal, scale-invariant structure of diffusion limited colloidal aggregates

[12].

The sensitivity of self-assembling systems to physical parameters such as temperature, electric field

and concentration provides a fine tuned control of their spatial organization in complex structures of

various topologies and sizes, on the nanoscale and beyond. In nature, many components of the living

cell that are crucial for its functionality are self-assembled structures, such as the lipid membrane that

envelope the cell and its organelles, the DNA complexes that carry its genetic information and the actin

and tubulin networks that provide mechanical strength and enable cell motility [1, 2]. Complex fluids

have overwhelming industrial importance as detergents, paints, food materials and cosmetics. The nature

of self-assembly systems allows the design of sophisticated supramolecular materials that possess novel

characteristics unattainable in simpler systems. Among the possible applications are microelectronics

and data storage devices. Of special interest are designs that try to mimic the functions of biological

materials, such as artificial ion channels, artificial muscles [18], or designed DNA crystals [19].

Often, the inter-aggregate forces are of entropic origin and therefore have an energy scale comparable

with the kBT energy scale of thermal fluctuations. Two significant examples for such entropy driven

forces are the repulsion between undulating surfactant membranes, which leads to smectic order of

lamellae [20], and the entropic interaction of ionized solutions which leads to the formation of macro-

scopic crystalline order of colloidal macroions. Entropy driven interactions are of special interest, since
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in this case the interplay between the structure dependent energy and thermal fluctuations leads to the

formation of complex, random structures.

1.2 Self-Assembling Networks

In the present work we treat two self-assembling systems that under certain conditions show aggregation

into linear, polymer-like structures. Most of the work focuses on microemulsions (Chaps. 2-5) , disper-

sions of polar (oil) non-polar (water) fluids and amphiphile. A related system treated in Chap. 6 are

dipolar fluids composed of magnetic colloidal nano-particles. While the microscopic building blocks of

these systems have nothing in common, we show that both possess the same basic large-scale structural

and thermodynamic features, another manifestation of the universal nature of self-assembly.

Topological defects play a crucial role in the thermodynamics of one-dimensional systems. It is well-

known 1D statistical system with short-range interaction, e.g. an Ising ferromagnet or a lattice gas,

lacks a first-order phase transition at non-zero temperature due to the proliferations of domain-wall

defects [21] (although phase transitions may occur at T > 0 when long-range forces are introduced).

By analogy, it was shown that self-assembling worm-like micelles do not separate into a coexistence

of a phase of infinite and a phase of short micelles, but instead, exhibit a broad exponential length

polydispersity [22, 26]. In this case the topological defects are the micelle ends.

Our analysis shows that the global topology of these two linearly aggregating, self-assembling systems,

microemulsions and dipolar fluids, is also governed by entropically induced defects. The energetically

favorable state of the amphiphilic molecules or magnetic colloidal particles is when they aggregate

in linear structures, and defects occur only due to the entropy increase caused by their introduction.

Apart from terminating at an end, these linearly aggregating systems may also contain another kind of

defects, branch points. When the branch points dominate over the ends the linear branches self-organize

to form large-scale networks. Our theory focuses on the topologically induced interactions within such

fluctuating networks and provides a unified understanding of both their structure and thermodynamics.

1.3 Microemulsions

In the case of microemulsions, dispersions formed by the addition of an amphiphilic agent to a system

containing oil and water, the collective character of self-assembling systems is expressed by a rich

variety of topologies [3, 26]. Even the presence of small amount of amphiphile can facilitate the local

mixing of the usually insoluble polar (water) and non-polar (oil) by creating complex fluids [23, 24, 25].

These ternary mixtures, which are thermodynamically stable, seem to be homogeneous when observed

in visible light [27]. However, shorter wave-length scattering experiments [28] and microscopy [29, 31]

reveal intricate microstructures: The amphiphile tends to self-assemble at interfaces separating the water
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FIGURE 1.1. Evolution of the two-phase reentrant loops and the subsequent three-phase regions –
The triangles are isothermal cuts through the phase diagram (W - water, O- oil, S - amphiphile) that trace the
multi-phase regions as the system approaches the symmetric regime (c0 ' 0): The loop appears as a bicritical
point (2), expands (3) and collides with the emulsification failure region (4), yielding the three-phase region (4-5)
[49].

and oil regions with its polar head residing in the water and its non-polar tail in the oil. Due to this

unusual surface activity these molecules are termed surfactants. The domains defined by the surfactant

interfaces are large compared with the microscopic molecular length scales. Their typical lengths are

mesoscopic, ranging from tens of nanometers up to few microns while typical surfactant length is only

1− 4 nanometer.
The phase diagrams of microemulsions were the main subject of the early experimental studies

[32, 33, 34], which originated from the research of solubilization and emulsification properties of soaps.

Measurements of microemulsions phase behavior [35] discovered that certain ternary systems exhibit

coexistence two- or three-phase coexistence regions around some typical temperature, T̄ (Fig. 1.1; de-

tailed description of the phase behavior is found in Refs. [25] and [36].) The systematic research of the

last two decades, mainly by Kahlweit, Strey and their co-workers [36, 37, 38], observed that these phase

patterns are a generic feature of microemulsion systems, not an accidental material-specific property.

They have shown that close to T̄ microemulsions exhibit unique thermodynamic behavior, especially the

appearance of the critical, reentrant two-phase separation [39, 40] that evolves into a three-phase region

as T̄ is approached further [41] (Fig. 1.1). Furthermore, recent studies [42, 43] suggest that generality

of certain phase behavior characteristics is not merely a qualitative feature of microemulsions; the data

from distinct ternary systems collapse onto a single curve revealing quantitative universality and scaling

properties.
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The microstructure related to this phase behavior has been studied using either direct microscopy

methods [31, 29] or scattering and Fourier-space analysis [28]. The microemulsion scattering structure

factor exhibits a characteristic wave-length dependence [44]. A prominent characteristic is the appear-

ance of distinct peaks shown at non-zero wave-vector that depend on the composition and the tem-

perature of the system [44] This indicates the existence of mesoscopic structures [41]: globular phases,

bicontinuous sponges, and even ordered phases such as lamellar or cubic. The structure is determined

by the detailed interplay between the entropy of the solutes and the energetics of surfactants. In general,

if there is enough surfactant the microemulsion exhibits an ordered lyotropic phase. With fewer surfac-

tant molecules there are still oil and water domains separated by an amphiphilic interface but they are

disordered due to entropic effects [45, 46]. If the amount of surfactant is further reduced, there is not

enough interface to create mesoscopic domains and the system tends to reject the excess amount of pure

water or oil into a separate phase such that the concentration of surfactant in the rest of system suffices

to produce domains of the optimal size [48]. The topology of a given microemulsion phase is determined

by the arrangement of the amphiphilic monolayers that separate the oil and water domains. This mi-

crostructure is controlled by the composition of the microemulsion and by the value of the spontaneous

curvature, c0, the preferred curvature of the amphiphile monolayer towards water or oil [7], which can be

changed by varying temperature, chain length or salinity. One possible classification of microemulsions

is according to this topology: (i) In the so-called “symmetric” region, where the spontaneous curvature

is small, microemulsions at low amphiphile volume fractions typically form sponge-like, multiply con-

nected, bicontinuous structures with interwoven water and oil labyrinths that are both continuous. In

this region the microemulsion phase can coexist with both aqueous an oil-rich phase (this three phase

coexistence is sometimes termed “Winsor III” [33]). (ii) For large values of c0, the microstructure is

typically one of disconnected oil-in-water or water-in-oil globules [22]. In this region, the globular phase

can coexist with a bulk oil (Winsor I ) or water (Winsor II ) phases (Fig.1.1).

The ultra-low interfacial tension. In experiment, the reentrant phase separation and the related

formation of bicontinuous phase are accompanied by a decrease of the interfacial tensions between the

coexisting phases by 3-5 orders of magnitude (relative to the bare oil/water value [36, 49]). Strey and

Sottmann have shown that the tension curves also exhibit universal scaling [50, 52].

Previous theories were able to produce some of the prominent experimental features of microemul-

sions, but not the reentrant phase separation with its critical points [53]. Chap. 2 describes how our

model of microemulsions in this regime as fluctuating networks whose building blocks are cylindrical

amphiphilic water-in-oil or oil-in-water tubes [54]. This model relates the physics of the progression of

the microemulsion topology to the striking, universal thermodynamics [43]. The observed, re-entrant

phase separation, characterized by the closed loops (Fig. 1.1 - phase diagrams 3, 4), is explained as

a direct result of the connected topology of the network that induces an effective attraction between

junction points in the network. The topologically induced attraction, which is governed by the material-
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FIGURE 1.2.Microemulsion network – Cryogenic transmission electron microscope image of microemulsion
shows the formation of the semi-flexible network and its 3-fold junctions [A. Bernheim-Grosswasser and Y. Talmon
(to be published)].

independent statistics of the junctions explains the experimentally observed universality demonstrated

by the data collapse of phase diagrams of non-ionic microemulsions [42, 50]. In Chap. 3 we calculate

the scaling of the ultra-low interfacial tension as a function of the spontaneous curvature and show that

this is a direct outcome of the network topology which leads to the 2-phase and 3-phase coexistence.

We also predict the related wetting transition [55], in accord with experiment [56].

The fluctuating networks model predicts the existence of bicontinuous structures relatively far from

the symmetric sponge regime. The bicontinuous regime spans from the sponge to a region of dilute,

highly asymmetric networks formed by interconnected amphiphile cylinders. Chap. 4 describes our

collaboration with the experimentalists Anne Bernheim-Grosswasser and Y. Talmon of the Technion,

who directly verified this prediction by cryogenic transmission electronic microscopy (cryo-TEM) mea-

surements (Fig. 1.2). The images strongly support the prediction that the critical phase separation of

microemulsions is into two coexisting networks which differ in their density of junctions [57].

The cryo-TEM measurement also confirmed that at the boundaries of the bicontinuous regime the

networks break up into disconnected cylindrical globules [57]. We have found that this connectivity

transition occurs when the curvature energies of both defects, ends and branch points, are approximately

equal. This is discussed in Chap. 5, where we calculate the defect energies by means of a numerical

minimization and a simplified analytical approximation. The results show that junctions are preferred

at low values of the spontaneous curvature while ends are preferred at larger spontaneous curvature

due to their curved spherical cap. The cross over between these two regimes heralds the formation of a

connected network [58]. The anomalous reentrant nature of this phase separation in both microemulsion

and dipolar fluids results from the non-monotonic dependence of the defect energy on system parameters,

as explained in Chap. 2.
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1.4 Dipolar fluids

Dipolar fluids have numerous scientific and industrial applications, mostly related to their strong field-

responsive properties [59, 60]. Ferrofluids are stable colloidal dispersions of ferromagnetic particles, such

as cobalt, iron oxide (Fe3O4) or nickel, coated with stabilizing surfactant or silica layers and dispersed

in a host liquid, such as water or paraffin [60]. Applications based on their high magnetic susceptibility

include floppy disks, credit cards, video tapes, loudspeakers, rotating shaft seals (as in computer hard

disk drives) and exclusion seals [61]. Another class of dipolar fluids, electro-rheological fluids, are colloidal

dispersions of highly polarizable particles in solvents with low dielectric constant, whose rheological and

mechanical properties change dramatically when an electric field is applied [62].

Dipolar fluids also have theoretical significance as one of the most basic models of statistical me-

chanics, since they are perhaps the simplest example of an anisotropic fluid. Nevertheless, the physical

understanding of this seemingly simple system is far from being complete. One of the fundamental,

yet unresolved questions in this field is the existence of a liquid-gas transition [63]. Adopting the basic

framework of simple liquids theory, one may first calculate the second virial coefficient of hard spheres

with only dipolar interaction to obtain a van der Waals like, 1/r6 attraction [64, 65]. This result suggests

that one might expect a liquid-gas transition to occur as the temperature is decreased [66].

However, this naive argument seems to contradict with the results of some recent simulation studies

which failed to observe such a liquid-gas transition in the phase diagram. Instead, it was found that

as temperature decreases, the dipolar interaction, which favors a nose-to-tail alignment of the dipoles,

drives the particles to form polymer-like semi-flexible chains [68, 69, 70, 71, 72] as predicted by theories

[67]. This chaining process reduces the typical coordination number since a particle in a chain has

only two nearest neighbors, much less than a particle in a random, close-packed isotropic aggregate.

Thus, the driving force for phase separation, the average attractive interaction per particle, is much

weaker in this system. Many studies have attributed the absence of liquid-gas transition to this strongly

collective behavior of the dipolar particles which interferes with the isotropic aggregation crucial for such

transition to occur [73]-[84]. Due to the one-dimensionality of the chains, defects proliferate and prevent

phase separation [21, 22]. Of course, if an enough isotropic attraction is present (e.g. the usual van der

Waals dispersion interaction), the usual isotropic aggregation and the resulting liquid-gas separation

can occur [74, 85, 86, 87]. However, the interesting and controversial point is whether phase separation

can be driven by the dipolar interaction alone. Recent computer simulations have found evidence for a

liquid-gas transition in a system of hard spheres with solely dipolar interactions [89]. Near the critical

point, the spheres assemble in chains that form networks with apparent branch points. Thermodynamic

measurements found evidence for a critical [90] liquid-gas transition [91] in magnetic fluids consisting

of ferric oxide nano-spheres. However, in this colloidal fluid it is difficult to separate the effect of the

dipolar interaction from the short-range, isotropic attraction [92].
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FIGURE 1.3. Dipolar network – A simulation of a self-assembling network (2D) composed of dipolar hard
spheres by Davis et al. [93].

Motivated by this preliminary evidence, we apply, in Chap. 6, the concepts of the network model to

dipolar fluids. In this case, it is the anisotropic dipolar interaction that drives the linear chaining of the

particles and the subsequent formation of networks when the chains are interconnected by junctions (Fig.

1.3) [93, 94, 95]. Our analysis suggests a resolution of the intriguing question concerning the existence

of the critical liquid-gas transition. We propose a novel, defect-induced liquid-gas transition that is

driven by the formation of dipolar networks [88], in accord with recent evidence for the occurrence of

such a transition in computer simulations. The model also explains the existence of closed, two-phase

coexistence “islands” in the phase diagram of sphero-cylindrical dipoles [89, 96, 97], an analogue of

the reentrant behavior of microemulsions. Noteworthy, in the context of this deep analogy, are recent

experimental studies on combined systems of magnetic nano-particles within self-assembling amphiphiles

[64, 80].

In Chap. 7 we summarize the results of the theory in the context of recent experimental findings and

suggest directions for future work.
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Scaling Laws for Microemulsions Governed by
Spontaneous Curvature
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Recent studies of nonionic microemulsions (ME) hav
provided systematic experimental knowledge concerni
their structure and phase behavior. The phase diagram
these simplest ternary systems, which contain water,
and a nonionic surfactant, are fairly universal. Among th
prominent features is the coexistence of either two or thr
phases in a temperature regime aroundT̄ , the tempera-
ture where the average curvature of the surfactant inter
cial film vanishes [1]. The progression of the multiphas
regions as a function of temperature exhibits a rema
able wateryoil symmetry: As the temperature is increase
above a critical value,T2 , T̄ a two-phase closed loop
with two critical points appears in the water-rich corner o
the phase diagram (the oil volume fractionf , 0.1). A
symmetrical loop appears in the oil-rich corner when th
temperature is decreased below the critical valueT1 . T̄
[2]. When the temperature further approachesT̄ (increas-
ing in the water side and decreasing in the oil side) t
loops start to expand. At certain temperatures the loo
(Tl . T2 on the water side,Tu , T1 on the oil side) in-
tersect the emulsification failure line (EF) associated wi
the coexistence of globules and an excess phase [3]. T
results in the creation of the three-phase body which exi
in the temperature regimeTl , T , Tu [4].

The microstructure of ME has been studied using NM
[5], neutron and x-ray scattering [6], and freeze fractu
electron microscopy (FFEM) [7]. The experiments su
gest that the ME near the closed loops and three-ph
regions is locally cylindrical. However, the global geome
try of the ME has not yet been established. There
some evidence (FFEM, x-ray scattering [8], viscosity, an
conductivity experiments) that supports the existence o
connected structure [9].

Much effort has been directed at developing a theor
ical understanding of ME which can explain in a unifie
manner both the phase equilibria patterns and microstr
ture observed in experiments [10]. The random interfa
models [10,11] which describe the sponge phase do
reproduce the typical phase behavior of the closed loo
and the critical points near the asymmetrical three-pha
0031-9007y97y78(13)y2616(4)$10.00
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body, where the microstructure of the ME is asymmetr
bicontinuous or globular. The important length scale
these asymmetric phases, far fromT̄ , is the radius of cur-
vature while the natural length scale in these models
the persistence length arising from the random collisio
of fluctuating sheets.

In another class of ME models which treat mor
dilute ME phases composed of compact objects such
spherical droplets [3] or cylinders [12] the basic lengt
scale is the spontaneous curvature. This approach w
used in the work of Meneset al. [13] in order to explain
the closed loops in terms of an interplay between
shape transformation and a postulated attraction betw
globules. In order to reproduce the observed clos
loops the model had to assume that these short-rang
material-specific interactions were in a particular windo
of attraction strengths. The loops obtained from th
model were not as symmetrical as those observed
experiments [9]; moreover the shape dependent attract
mechanism required the assumption that the interactio
of water globules in oil and oil globules in water be of th
same order of magnitude.

Motivated by the experimental evidence we propo
a theory based on a picture of branched tubular M
The connected topology enables a unified description
both dilute systems in the vicinity of the loops, and th
bicontinuous dense spongesf , 0.5d. By modifying the
compositions, the radius of the cylindrical tubes chang
and the system continuously transforms from a dilu
network composed of long narrow cylinders connected
remote junctions to a very dense network in which th
radius of the cylinders is comparable with their length an
the junctions are very close, which can very well represe
the asymmetric bicontinuous sponge phase [8]. We sh
that the interplay between entropy and curvature ener
which are coupled through the connected topology of t
network can produce an effective attraction between t
junctions. This, inherent, material independent entrop
interaction is balanced by the steric repulsion of th
undulating cylinders. We show that the observed pha
© 1997 The American Physical Society
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behavior that stems from the detailed balance of the
curvature-entropy interactions reproduces quantitativ
many experimentally observed features of the clos
loops and three-phase body. The water-oil symmetry
a generic feature of this model due to the entropic a
interfacial character of the interactions.

We treat the branched ME as a network of se
assembling, semiflexible polymers [12,13] interconnect
by z-fold junctions [14]. The curvature energy associate
with the creation of each junction,esrd, to be calculated
below, is a function of the cylinder radius,r , dfyfs,
wheref and fs are the volume fractions of the interna
phase and surfactant, respectively, andd the surfactant
chain length. The junctions connect an ensemble of cyl
drical branches whose length distribution is proportion
to Xsmd, the number density of branches of lengthm. The
free energy per unit volume of the self-assembling n
work, FN (in units ofkBT ), includes three contributions,

FN ­
Z

Xsmd ln Xsmd dm 2 sz 2 1dr ln r 1 re ,

(1)

where r ­
2
z

R
Xsmd dm is the number density of the

junctions. The first term is the Flory-type translation
entropy of the free cylinders, the second term accounts
the entropy loss of the cylinders’ free ends when they a
constrained to meet at a junction, and the third term is t
curvature energy of the junctions, that also includes t
curvature energy of the cylinders which is independent
Xsmd [15].

The end-cap energy of a free cylinder is generally lar
compared to that of a junction, hence the system pref
to pay the entropy penalty of a junction in order to avo
free ends [16]. The optimal geometry of the netwo
is found by minimizingFN with respect toXsmd. This
procedure yields an exponential length distribution of t
cylinders with an average cylinder length,m̄, which scales
like m̄ , f12zy2ee. Substituting the optimal distribution
Xsmd results in

FN ­ 2r ­
2
z

f

m̄
, 2fzy2e2e. (2)

This is just the free energy of an ideal gas of junction
whose density,r, is determined by the network volume
fraction and the Boltzmann factor of the junction energ
e2e . The fzy2 dependence ofFN indicates that high-z
junctions are less probable [14]. We therefore consid
only the casez ­ 3. The nonlinearf3y2 dependence
of FN represents an effective attraction between t
junctions.

As we show below, we find that the curvature energ
of a junction,esc0rd is a nonmonotonic function of the
tube radius,r and the spontaneous radius of curvatur
c21

0 . This nonmonotonic behavior is responsible for th
trend of phase separation followed by remixing whic
produces the closed loops and three-phase body in
phase diagram.
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We use a variational model to simplify the calculatio
of the curvature energy of the junction characterized b
bending modulusksT d. We consider a junction compose
of three “horns” connected to a spherical core. T
radius,r, of the cylindrical part of the horns is determine
by the composition, and the parameter to be minimiz
is the curvature of the horn near the spherical core [1
The minimized junction energy exhibits a nonmonoton
dependence on the tube radius, which has the approxim
form [18],

esr, T d .
ksT d

T
e0

∑
1 1 e2

µ
c0r 2

1
2

∂2∏
, (3)

wheree0 . 2; e2 . 10, thus there is a deep minimum a
c0r ­ 1y2 (r is measured in units in which the EF is a
c0r ­ 1). As a result, Eq. (2) indicates that the effectiv
attraction between the junctions, whose magnitude
proportional toe2e , exhibits a steep maximum atc0r ­
1y2. Hence, increasingr from the lower side of this
maximum increases the effective attraction eventua
driving the system to phase separate into two phases
further increase in the radius decreases the attraction
that entropy tends to remix the phases. As shown be
this phenomenon results in the creation of closed loops

The effective attraction,FN ­ 2r, competes with two
repulsive terms: One term arises from the restriction
the thermal fluctuations of the flexible tubes by neig
boring cylinders resulting in an entropy decrease and
effective repulsion. Scaling arguments show that this
pulsion behaves likeFH ­

27
16 f4y3, where the geometri-

cal prefactor is found by a more detailed calculation [19
The second term is a quadratic excluded-volume ste
repulsion,s1 2 fd lns1 2 fd , f2y2. The dependence
on the tube radius,r , dfyfs, enters only in the attrac-
tion term, through the Boltzmann factor,e2esr ,Td. The
total free energy possesses a critical point where the
tractionFN is large enough for the ME to phase separa
The phase of lower volume fraction is a dilute netwo
with fewer junctions and the higher volume fraction
a dense network with many junctions [20]. The critic
composition and junction energy arefc . 1y8; e2ec .
0.2, respectively. The location of the critical point, whic
is far from the binary-mixture sides of the phase triang
indicates that the system phase behavior is governed
the swollen network interactions and is not directly co
nected to the micellar binary systems. The nonmonoto
behavior ofesrd indicates that there are two critical radi
rc, at which the system phase separates. This provi
an inherent mechanism for reentrant phase separation
which does not involve any material-specific interaction
The corresponding phase diagram is the closed loop w
two critical points (Fig. 1).

The temperature dependence enters exponenti
through the prefactorksT dyT of the Boltzmann factor
argument of the attraction.ksT d is the renormalized
bending modulus [21]: ksT d . k0f1 2 s3y4pd sTy
k0d lnsryadg. When we approach̄T , the temperature at
2617
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FIG. 1. Spinodal curves: each expanding loop has two critica
points at f ­ fc . 1y8. The small loops are symmetrical,
and as they grow the lowerf side of the loop sharpens. The
axis of the loops is atc0r ­ 1y2 in accord with experiment
[1,9].

which c0 vanishes, both from above and below the length
scale, c21

0 , increases asc21
0 , jT 2 T̄ j21. Thus, the

junctions become larger and, due to the renormalizatio
of the bending modulus, softer, so that the entrop
induced attraction between the junctions overcomes th
curvature energy cost of their creation. Consequently
there are two double-critical temperatures,Td ­ T2, T1,
where the attraction reaches a critical value and th
closed loops appear. The water side loop appears
T2. As the temperature is increased the double-critica
point splits into two separate critical points with radii
below and abovec21

0 y2, both at the same volume fraction
f ­ fc . 1y8. The oil side loop exhibits an analogous
behavior with an opposite temperature dependence: th
shrink with increasing temperature and disappear atT1.
The difference between the critical radii,rc, and the axis
of the loop,c0r ­ 1y2, which is proportional to the width
of the closed loops in the isothermal cuts, scales like [23

c0jrc 2 r0j .
∑

e2
k0

T̄

µ
T1 2 T2

T̄

∂∏1y2 Ç
T 2 Td

T̄

Ç1y2

,

(4)

whereTd ­ T2 on the water-rich side andTd ­ T1 on
the oil-rich side. This temperature dependence is plotte
in Fig. 2 along with the experimental data. The oil-rich
side data is for a ternary system whose surfactant isC12E5

and the water-rich side of a system withC8E4. These
ternary systems have almost equal values ofk0sT1 2 T2d
[9]. As predicted from Eq. (4), both curves exhibit the
square root temperature dependence withalmost equal
prefactors demonstrating the water-oil symmetry. Thi
indicates that the phase-separation mechanism is identic
for both the water and oil systems and is very unlikely to
be related to specific attractive interactions.

This branched ME picture also explains the creation o
the three-phase triangle as a result of the intersection
2618
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FIG. 2. Expansion of the closed loop: the experimental dat
from Ref. [7] for the water-rich side ofC8E4 system and
the oil-rich side ofC12E5 is plotted along the scaling result
Dr , jT 2 Td j1y2. The prefactors for the oil-rich and the
water-rich sides are almost the same indicating the water-o
symmetry.

the EF, c0r ­ 1, with the closed loop, as seen experi-
mentally [1]. As shown above, when the temperature ap
proachesT̄ the closed loop expands. The ratio between
the angles of the axis of the loopc0r ­ 1y2 and the
EF c0r ­ 1 remains constant. Eventually, the expand
ing loop intersects the EF and forms a three-phase tr
angle. There are two intersection temperatures at whic
the three-phase body appears,Tl , T̄ for the water side
and Tu . T̄ for the oil side. When the loop further ex-
pands its contact point with the EF splits into two phase
with volume fractions above and belowfc which co-
exist with the excess phase rejected by the globules th
have already reached their optimal size. As the temper
ture approaches̄T , the volume fraction of the dense net-
work, usually termed “the middle phase,” increases and
becomes an asymmetric sponge phase. At temperatu
lower thanT̄ the asymmetric sponge is composed of con
nected oil tubes. As the temperature increases the midd
phase becomes a symmetric sponge exactly atT̄ , and af-
ter a further temperature increase the asymmetric spon
becomes a net of water tubes.

The interfacial, material-independent nature of ou
model providesuniversalscaling laws which are in agree-
ment with a data collapse of several ternary systems on
a single curve when they are described by appropria
reduced variables [22]. Employing the scaling laws
which approximate the expansion of the loop (4) and
the curvature energy of the junction (3) one derives
universal scaling for the composition of the middle phase
fm, which shows a sigmoidal temperature dependenc
[23],

f̄ ­ sgnstd hf
q

sq 1 1d2y4 2 qjtj

2 sq 2 1dy2g1y2 2 1j, (5)
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FIG. 3. The middle phase trajectory: the experimental da
of severalCiEj systems from Ref. [22] collapse onto the the
oretical scaling result when plotted in the normalized var
ables t ­ sT 2 T̄ dysT̄ 2 Tld ­ sT 2 T̄ dysTu 2 T̄ d and f̄ ­
sfm 2 1y2dys1y2 2 fcd.

whereq . 5 is a universal constant and the reduced va
ables aret ­ sT 2 T̄ dysT̄ 2 Tld ­ sT 2 T̄ dysTu 2 T̄ d
and f̄ ­ sfm 2 1y2dys1y2 2 fcd. The middle-phase
trajectory (5) exhibits the same water-oil symmetry ob
served in the closed loops (4). As can be seen from Fig
the theoretical universal curve (5) is in good agreeme
with the data collapse obtained for four differentCiEj sur-
factants taken from [22]. It is important to note that a
though the network picture is not valid very close toT̄ the
scaling for the middle-phase composition passes smoot
through the symmetric sponge phase; thus, indicating t
branched ME model is applicable for most of the pha
space.
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We predict theoretically the gradual formation of fluctuating, connected microemulsion networks from
disconnected globules as the spontaneous curvature is varied, in agreement with recent direct measure-
ments of these topological transitions. The connectivity induced instability together with emulsification
failure of the network relate the ultralow tensions and wetting transition to the changing microstructure.

PACS numbers: 64.75.+g, 68.10.Cr, 82.70.–y
The interplay between structural energy and entropy that
characterizes the self-assembly of microemulsions (ME)
leads to an extremely rich variety of geometries. Among
these, the multiply connected sponge, in which the water
and oil domains are both continuous, has been extensively
studied [1]. These bicontinuous structures are observed
around the inversion temperature, T̄ , where the mean cur-
vature of the surfactant film vanishes. In the very same
region, ME systematically exhibit striking thermodynamic
features, especially the critical, reentrant two-phase separa-
tion and the subsequent formation of a three-phase region
[2], where the ME is composed of a surfactant-rich lens
that generally wets the interface between the water-rich
and oil-rich phases only partially [3]. The behavior of the
ultralow tensions at these three interfaces as a function of
temperature exhibits a wetting transition, where the lens
spreads all over the oil-water interface [4]. Recent ex-
perimental studies by Strey and Sottmann on 19 different
non-ionic surfactant ME have shown that both the phase
diagrams [5] and tensions [6] obey similar universal scal-
ing properties.

Previous theories [7] that focused on the symmetric
sponge, where the amphiphilic random interface has equal
probabilities to curve towards oil or water, could not re-
produce the critical, reentrant phase behavior nor the sub-
sequent criticality near the three-phase region. Motivated
by the unexplained reentrance phenomena, we proposed a
model for ME based on thermally fluctuating asymmetric
bicontinuous networks, whose building blocks are cylin-
ders interconnected by junctions [8]. The cylinders are
stabilized by the finite spontaneous curvature, c0, above or
below T̄ [9]. Recently, these networks with their three-fold
“Y-like” junctions have been directly observed by trans-
mission electron microscopy (TEM) [10] (Fig. 1a).

In this paper, we show how a unified explanation of the
connection between microstructure and interfacial proper-
ties naturally emerges from the fluctuating network model.
It consistently predicts the topological transitions of the
ME with decreasing spontaneous curvature, c0 (which is
controlled by temperature in non-ionic systems): The ME
evolves from spherical globules to long cylinders of ra-
dius R that subsequently interconnect by threefold junc-
0031-9007�00�84(6)�1244(4)$15.00
tion, leading to the formation of the bicontinuous network.
We introduce the concept of emulsification failure (EF)
of networks that allows for the optimization of the local
curvature energy through rejection of the excess internal
phase. In the region of the reentrant phase separation the

FIG. 1. (a) The formation of a threefold “Y-like” junction.
The theoretical shape of the junction, as calculated by numeri-
cal minimization, has a lamellar core, while the cylinder ter-
minates with an enlarged spherical end cap. The cryo-TEM
image of the Habon G system shows the semiflexible network
formed by such junctions [A. B. Grosswasser and Y. Talmon (to
be published)]. (b) The phase stability diagram of spheres (S),
cylinders (C), lamellae (L), and the network (N) made of inter-
connected cylinders. Note the series of topological transitions,
S ! S 1 C ! C ! N as c0R decreases.
© 2000 The American Physical Society
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global, large-scale network topology is optimized via ad-
justment of the typical distance, L, between its junctions.
The appearance of the three-phase coexistence of ME with
almost pure oil and water phases, when the EF and the
reentrance loops overlap, therefore signifies the capability
of the system to simultaneously tune its structure on both
local and global length scales. We trace the progression
of the microstructure from the curvature-governed dilute
network, L ¿ R � c21

0 , to the strong fluctuation regime,
where the typical distance between junctions is compa-
rable with their size, c21

0 ¿ L � R, and they form a dense
sponge. We predict the consequent dependence on c0 of
the interfacial tension and the resulting wetting transition
in agreement with experiment.

We first discuss the sequence of topological transitions
that ME show on the way to the formation of bicontinu-
ous networks. At high spontaneous curvature, far from T̄
(lower part of the phase diagram in Fig. 1b), one can ne-
glect the thermal fluctuations. The dominant contribution
to the free energy (per unit volume) is the local elastic
curvature energy, fe � fr23E�r�, where f is the volume
fraction of the inner phase (oil or water), r � c0R is the
ratio of the radius to the optimal radius of curvature; E�r�
is the scale invariant curvature energy. Previous studies
have dealt with the details of the phase diagram in this
regime and we describe only the main results [9]: In a
single phase, the radius is determined by the volume to
surface ratio R � 2d�f�fs�, where the volume fraction of
the surfactant is fs and d is the surfactant chain length (R
is the cylinder radius, 2�3 of the sphere radius). The cur-
vature energy of cylinders is Ec�r� � k�1 2 4r�, where
k is the bending modulus. For spheres, the curvature en-
ergy, Es�r� � 8

9 �2k�1 2 3r� 1 k̄�, includes a topological
contribution proportional to the saddle-splay modulus, k̄

(Es and Ec are measured relative to the curvature energy
of lamellae El � 0). Comparing the energies of the three
possible local geometries, one finds that lamellae are op-
timal in the symmetric regime r ,

1
4 (Fig. 1b). As r in-

creases, there occurs a transition to cylinders, followed by
a transition to a region where they coexist with spheres,
and finally to a pure phase of spheres. When r is further
increased, the free energy becomes unstable with respect
to the EF phase separation: In this type of instability the
local curvature energy, E, is optimized by the rejection of
the excess, internal phase to optimize the curvature energy
and still obey the geometrical constraints set by composi-
tion [11,12]. Coexistence with an excess phase takes place
when the osmotic pressure of the material outside the glob-
ules vanishes. Expressed in the free energy f�r , f�, this
condition takes the form

f 1 �1 2 f�≠ff 1 �r�f�≠rf � 0 , (1)

or in the scaled form of the curvature energy, r≠rE � 2E.
The global structure of the ME, and especially the con-

nectivity transition from separate cylinders to the bicon-
tinuous network [13], is governed by thermal fluctuations.
The cylindrical local geometry [9] is determined by the
relatively large curvature energy while all other scales are
governed by the smaller free energy of fluctuations, rang-
ing from the stringlike undulation of the branches to the
longer wavelength translational entropy of the junctions
[8]. To estimate the free energy, consider the network
formed when the cylindrical branches are interconnected
by z-fold junctions that each cost an energy e (relative to
the cylinders) due to their curvature. The junctions be-
have as an ideal gas of defects in the sense that the en-
tropy is kBT per junction. The connectivity of the network
implies that the number density of junctions, rz , scales
nonlinearly with f, the network volume fraction, rz �
fz�2e2e [14] resulting in an effective attraction (for z $

3). For disconnected cylinders (z � 1), the ideal gas of
junctions is replaced by a gas of end caps of number den-
sity r1 that each cost curvature energy e1. This attrac-
tion between the junctions is the driving force leading
to the connectivity transition from cylinders to network
around the line r3 � r1. Apart from a logarithmic cor-
rection, this transition occurs when the energies of both
defects are equal, e 2 e1 � lnf. Figure 1a describes the
creation of a junction by the fusion of an end cap and a
cylinder with the topological cost of one handle; its con-
tribution to the integral over the Gaussian curvature is
k̄

R
K dS � 24pk̄. The difference in the mean curvature

contribution to the elastic energy, as calculated by numeri-
cal or variational minimization, scales approximately lin-
early with r , 2k

R
dS �H 2 c0�2 � 4pk�Pr 2 Q�, with

P � 2.14 and Q � 1.04 [15]. Junctions are optimal for
small values of the normalized spontaneous curvature due
to their flat lamellar core, while end caps are preferred
at larger r by their spherical cap (Fig. 1a). The resulting
transition line,

rn �
1
P

µ
Q 1

k̄

k
1

1
4pk

lnf

∂
, (2)

is depicted in Fig. 1b. We include the effects of short
wavelength fluctuations by the renormalized bending
modulus k�R� � 2�a�4p� ln�R�j�, and saddle-splay
modulus k̄�R� � �ā�4p� ln�R�j̄�; the correspond-
ing membrane thermal persistence lengths are j �
d exp�4pk0�a� and j̄ � d exp�24pk̄0�ā�, where k0
and k̄0 are the bare values of the moduli and the exponents
are a � 3, ā � 10

3 [16]. As the temperature approaches
the inversion temperature, T̄ , the curvature determined
length scale increases as R � 1�c0 � 1�jT 2 T̄ j, and k̄

increases logarithmically from its typical negative nomi-
nal value, k̄0 , 0. This leads to the expansion of the
network region (Fig. 1b), since higher values of k̄ favor
the saddlelike shape of the junction [17]. This theoreti-
cal prediction for the topological transition, spheres !
spheres 1 cylinders ! cylinders ! network, was re-
cently substantiated by direct cryo-TEM measurements of
non-ionic ME [10].
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We also anticipate that the network will be unstable with
respect to EF similar to that of globules. Motivated by
the experimental phase diagrams, which exhibit straight,
constant-r EF lines, we neglect the small effect of the en-
tropic contribution in the free energy of the network and
substitute in Eq. (1) only the dominant curvature contribu-
tion, fr23Ec�r�. Since this local energy is not sensitive
to connectivity, we obtain an identical result for both dis-
connected cylinders and networks for the optimal radius,

c0Rc �
2 ln�Rc�j� 2 1
4 ln�Rc�j� 2 1

. (3)

Rc has two limits; the curvature-governed regime �h �
c0j ø 1�, shown in Fig. 1b, Rc � 1��2c0�, while in the
entropy-governed regime (h � 1) it crosses over to Rc �
j. The suggested EF of cylinders followed by EF of net-
works, at lower values of c0 (Fig. 1b), is in accord with
experiment [10].

Apart from the local EF instability, which is also
common to globules, the bicontinuous network exhibits
a unique instability which directly results from its global
connectivity: The entropic part of the free energy is un-
stable to phase separation when the effective attraction,
2rz � 2fz�2e2e , overcomes the repulsion. This occurs
for values of the junction energy lower than a critical
value. Since fz�2 represents an effective attraction only if
the exponent is higher than linear (or z $ 3), we find that
this type of phase separation is unique to the connected
structures. Within the network picture, the reentrant phase
separation loops and the subsequent three-phase coexis-
tence emerge as direct results of the nonmonotonic behav-
ior of the junction energy, e�r� [8]. The curvature energy
of the junction exhibits a minimal value at r� [15] which
corresponds to a steep maximum of the attraction �e2e .
When the maximal attraction exceeds a critical value, the
ME phase separates into two networks of the same cylin-
drical radius r , which differ in the density of junctions,
as verified by experiment [10]. In the phase diagram, this
global instability is manifested by the appearance of a
two-phase coexistence loop bounded by two critical points
with a width that expands as Dr � jr 2 r�j � �1 2

h�h��1�2 [8] (h� refers to the double critical points where
the loops first appear).

As T approaches the inversion temperature, T̄ (where
h � c0 � 0), the loops expand until the increasing radius
of their cylinders make the networks unstable to the local
EF [Eq. (3)], and they reject the excess phase. The conse-
quent three-phase coexistence between two ME networks,
dense and dilute, together with an excess phase, is there-
fore the outcome of the simultaneous action of two dis-
tinct mechanisms for phase separation [12]; the local EF is
characterized by the radius of curvature, Rc [Eq. (3)], and
governs the coexistence of the network with its excess
phase, while the global attraction of the junctions is charac-
terized by the typical junction-junction correlation length
and governs the two-network coexistence. The experimen-
1246
tal phase diagrams [6] and tension curves [5] of many
non-ionic ME systems, in both the two-phase and three-
phase temperature regimes, exhibit a universal data col-
lapse. We suggest that the source of this universality
is purely geometrical; it is the connectivity of the ME
network that provides an inherent, material independent,
topological mechanism for attraction. Recent cryo-TEM
experiments [10] which prove our structural understanding
of the three-phase region, have also confirmed this theo-
retical proposal that indeed the bicontinuity is sustained
even up to the highly asymmetric regime where the reen-
trant phase separation first occurs.

In the emulsification failure (EF) scenario, the macro-
scopic interface between the ME and the excess phase is
a well-defined monolayer [18]. For this case, the experi-
mentally measurable, macroscopic interfacial tension, s,
is simply the free energy per unit area required to un-
fold a segment of the ME network to a planar monolayer
when the surfactant molecules are transferred to the newly
formed interface. Far from T̄ (h ¿ 1), the dominant con-
tribution is the elastic energy of the flattened interface due
to the difference between its curvature energy and the op-
timal value at the network EF. This scales as k�R�c2

0
and therefore vanishes at T̄ . An additional contribution
to the interfacial tension, which dominates in the strong
fluctuation regime, accounts for the loss of network en-
tropy, and this contribution determines the finite, ultralow
value of the tensions at T̄ , where the curvature contribution
vanishes. To estimate s we employ an expansion of the
reentrance loop and the EF around the critical end points
h � h3 � 0.9, where the three-phase body first appears,
with respect to the critical parameter Dh � 1 2 jhj�h3
[8]. The resulting values for the interfacial tensions be-
tween the two networks and their excess phase are (in units
of kBTj22)

s6�h� � k�Rc�h2 1 �j�Rc�2�A 6 BDh1�2� , (4)

where the constants A � 0.4 and B � 0.02 are found by
expansion of the network free energy. The higher value,
s1, corresponds to the dilute network phase, due to its
higher entropy (weaker repulsion forces), and the lower
value, s2, corresponds to the dense ME phase. In Fig. 2
the experimental curves s1�h� measured for 19 ternary
systems [6] collapse onto the universal theoretical predic-
tion of Eq. (4), when normalized by kBTj22, where j was
independently measured by small-angle neutron scatter-
ing (SANS) [19]. The data shows an asymptotic h2 be-
havior with a deep decrease, over 3 orders of magnitude,
to the ultralow nonvanishing value A 1 B � 0.42 at the
entropy-governed symmetric sponge.

By contrast, when the two coexisting phases are both
networks, the corresponding interface is a continuous tran-
sition layer separating regions where the branches have
the same radius but their local density (or the density of
junctions) differs. Near the critical end point where the
two networks merge, the thickness of this transition layer
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FIG. 2. The tension at the interface between the dilute network
and the excess phase, s1, of 19 non-ionic microemulsions [6]
collapse onto the scaling result (4) when plotted in units of
kBTj22, where j was measured independently by SANS [19].
The data crosses over from the curvature governed regime, h ¿
1, to the ultralow nonvanishing value at the symmetric sponge,
h ø 1 (inset).

increases. Recalling that the phase separation is along
constant-r tie lines, we consider only inhomogeneities of
the network volume fraction by adding a term propor-
tional to the square of its local gradient, �=f�2. Within
a mean-field approximation, this approach yields an inter-
facial tension that vanishes as sc � Dh3�2 at the critical
points. Following the experiments, we assume that the
boundary crosses over from a monolayer to a continuous
transition layer in the vicinity of T̄ (h ø 1), where the
thickness of the interface is comparable to the radius of the
cylinders, s2 � sc [18]. This is typical of the symmet-
ric sponge, where the global length scale becomes com-
parable to the size of the domains. The resulting tension
takes the following form:

sc�h� � �j�Rc�2�A 2 B�Dh3�2. (5)

The consequent balance of the three surface forces,
given by Eqs. (4) and (5), determines the wetting prop-
erties of the ME: A generalized Young’s law implies that
the contact angle of a nonwetting lens [3] of the dense
network phase floating between the dilute network and
the excess phase is cosu � �s2

1 2 s2
2 2 s2

c ���2scs2�.
The tensions of the symmetric sponge at h � 0 are almost
equal s1 � s2 � sc, and the theory predicts a lens with
a contact angle u � 2p�3 2 4B�

p
3 A � 0.63p . As the

ME becomes asymmetric and approaches the critical end
points, h � h3, the tension between the merging phases
vanishes as sc � Dh3�2, which is faster than the vanishing
of the difference between the tensions at the monolayers
separating these phases and the excess phase, that scales
as s1 2 s2 � Dh1�2. Consequently, close enough to the
critical end points, it is energetically favorable to avoid cre-
ating an interface between the dilute network and the ex-
cess phase by spreading an intervening layer of the dense
network phase. Consistent with experiment [4], we pre-
dict a wetting transition at the points, h � hW , which are
defined by the complete wetting condition, s1 � s2 1

sc, leading to hW �h3 � 1 2 2B�A � 0.9. In this vicin-
ity the theory predicts that the contact angle vanishes as
u � �hW 2 h�1�2. We note that the entropic residue of
the free energy due to the thermal fluctuations of the net-
work is essential to obtain this wetting transition as well
as the ultralow nonvanishing tensions at T̄ .
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Direct evidence by cryogenic temperature transmission electron microscopy shows the existence of
networks in microemulsions near the two-phase closed loops. Networks formed by interconnected oil-
swollen cylinders were observed in the water-rich regions of the phase diagram of the C12E5 /water/n-
octane system. The coexisting phases within the loops were shown to be concentrated and dilute networks.
Similar micellar networks were also found in the binary system. These observations substantiate the
suggested theoretical link between the structural bicontinuity and the unique phase separation and criticality
of microemulsions: All these regimes are governed by the entropic attraction between network junctions.

Introduction
Bicontinuous, multiply connected shapes are a wide-

spread, almost generic feature of microemulsions (ME)
and are associated with ultralow interfacial tensions. The
typical spongelike microstructure of these phases consists
of two-dimensional layers of amphiphiles separating oil
and water domains that are both continuous.1 These dense
symmetric sponges (at almost equal volume fractions of
oil and water) have been observed mainly in the vicinity
of the inversion temperature (Th ), where the preferred
curvature of the amphiphile monolayer toward water or
oil (thespontaneous curvature) is small.2,3 Thebicontinuity
disappears at higher spontaneous curvatures, away from
Th , where the monolayers tend to form disconnected
globules containing water or oil surrounded by a continu-
ous domain of the other component.4-7

Preliminary measurements by self-diffusion NMR and
conductivity suggested the existence of connected struc-
tures at temperatures relatively far from Th , where one
would have expected a phase of disconnected globules.8,9

A recent theory predicted that those structures are dilute,
highly asymmetric networks formed of interconnected
semiflexible cylinders.10 Moreover, it suggested a direct
link between the structural bicontinuity and the unique
thermodynamics of ME: The generic two-phase closed
loops, their critical points, and the subsequent formation

of the three-phase body (Figure 1A1) are all explained as
a direct result of an effective entropic attraction induced
by the network fluctuations. This attraction governs ME
from dense sponges down to dilute (even micellar)
networks; all these regimes can be understood as different
limits of the same network picture.

Here we report the first direct evidence, by cryogenic
temperature transition electron microscopy (cryo-TEM)
imaging of the existence of these dilute, semiflexible
networks in the nonionic, ternary ME, C12E5/water/n-
octane, in the water-rich corner of the phase diagram.
Disconnected spheres or even cylinders were indeed
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Figure 1. (A) Evolution of the three-phase triangles (water
(W), oil (O), and surfactant (S)) with rising temperature,
demonstrating the evolution of the isothermal closed loops,
their critical points, and the subsequent formation of the three-
phase body (T ) Tl). (B) Evolution of the one-phase channel (1)
defined by the EF line (2) as we measured (small dots), and line
of critical points (2) (dots after Kahlweit et al.1), for fixed C12E5/
water weight ratio ofφs/φw ) 1.4/98.6, as function of temperature
and n-octane weight percent, φo.

5448 Langmuir 1999, 15, 5448-5453

10.1021/la990301q CCC: $18.00 © 1999 American Chemical Society
Published on Web 07/31/1999



observed when lowering the temperature increased the
spontaneous curvature. However, we find that all the
important thermodynamic links between the symmetric,
bicontinuous phase at temperatures close to Th and those
phases with finite spontaneous curvatures at tempera-
tures relatively far from Th occur via network topology.
These networks are observed in the proximity of both the
two-phase closed loop and the emulsification failure (EF)
line, where they are in equilibrium with a rejected excess
phase.11 Moreover, the phase separation within the closed
loop results in coexistence of concentrated and dilute
networks. The three-phase equilibrium of the symmetric
sponge ME with excess water/oil phases arises from the
confluence of the EF instability and the two-phase
loops,10,12 both of which involve network structures. All
these observations experimentally substantiate the theo-
retical link between ME phase separation, the entropic
attraction, which leads to the formation of networks at
temperatures away from Th , and the symmetric, bicon-

tinuous phase at Th .10 In the dilute limit, we observed
similar network topology in the corresponding binary
C12E5/water system.13

Experimental Section
Materials. We used C12E5 (Nikko, Japan) that had been stored

under nitrogen atmosphere at about -20 °C, n-octane (Riedel-de
Haën, Germany, 99% purity), and Millipore water. The solvents
and the surfactant were used without further purification.
Solutions were prepared at constant surfactant-to-water weight
ratio of φs/φw )1.4/98.6 at various n-octane contents (φo e 3%)
and temperatures.

Cryo-TEM. Specimens were prepared in a controlled envi-
ronment vitrification system (CEVS14), at controlled temperature
and relative humidity to avoid loss of volatile components (water
and n-octane). The microemulsion drop was placed on a TEM
grid covered by a holey carbon film. The drop was then blotted
with filter paper to form a thin liquid film on the grid, which was

(11) Safran, S. A.; Turkevich, L. A. Phys. Rev. Lett. 1983, 50, 1930.
(12) Kahlweit, M.; Strey, R.; Busse, G. J. Phys. Chem. 1990, 94, 3881.

(13) Bernheim-Groswasser, A.; Wachtel, E.; Talmon, Y. To be
submitted for publication.

(14) Bellare, J. R.; Davis, H. T.; Scriven, L. E.; Talmon, Y. Electron
Microsc. Technol. 1988, 10, 87.

Figure 2. (A) Cryo-TEM image of a microemulsion at φo ) 3% and T ) 30 °C showing swollen oil-in-water cylindrical tubes. One
can identify 3-fold junctions (large arrows), entanglement points, or 4-fold junctions (arrowheads). Black dots indicate cylinder ends
pointing outside the image plane or a folded thread (noted by a small arrow). (B) Cryo-TEM image of a microemulsion at φo ) 0.7%
and T ) 23 °C. The swollen oil-in-water cylindrical tubes are thinner in comparison to Figure 2A due to the lower oil content.
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then immediately plunged into liquid ethane at its freezing
temperature. The vitrified specimens were observed in a Philips
CM120 transmission electron microscope at an accelerating
voltage of 120 kV. The specimens were kept in the microscope
at better than -175 °C by an Oxford Instruments cryo-specimen
holder. Low-electron-dose images were digitally recorded by a
Gatan MultiScan 791 CCD camera at about 4 µm underfocus to
enhance phase contrast.

Results and Discussion
The ME network topology was observed by cryo-TEM

in a large region that was probed in the one-phase channel
defined by the EF line and the two-phase boundary as
shown in Figure 1B1. Only at lower temperatures, where
the spontaneous curvature is large, was a transition to
disconnected globules observed. Following ref 1 we worked
at a fixed C12E5/water weight ratio of φs/φw ) 1.4/98.6, at
various temperatures and n-octane weight percent, φo.
Closed, two-phase coexistence loops are found1 throughout
the temperature regime where the upper phase boundary
line (2) is nonmonotonic. These loops first appear at the
minimum of 2 (which we refer to as T ) T-) and then
expand as temperature becomes higher. Their evolution

as function of temperature is presented in Figure 1A,
where the dotted line is a cut at fixed C12E5 /water weight
ratio. The width of the loop between its two critical points
is approximately the difference in oil content φo, between
the two branches of the 2 line. Another phase separation
occurs at the EF line (2) where the ME coexists with excess,
almostpureoil, phase.15 Thesingle-phasechannelbounded
by these two lines shrinks as one increases the oil content
and vanishes at the critical end point (Tl ) 31.8 °C) where
the two lines intersect to form the three-phase body.12

According to the network model,10 this unique phase-
behavior is intimately related to the interconnected
structure of the ME in this region: The ternary system
forms networks of oil-in-water cylindrical tubes (of radius
r ∼ φo/φs) connected by 3-fold junctions. The closed loops

(15) This defines a plane through the phase prism that cuts the bi-
nodal surface (2) close to the line of critical points. Throughout the
temperature regime where the binodal line (2) is nonmonotonic
the isothermal cuts exhibit closed two-phase coexistence loops. These
loops disappear at the double critical point located at the minimum of
the binodal surface and the line of critical points. The EF surface located
at the 2 line where the ME coexists with an excess phase, thus defining
a single-phase channel.

Figure 3. Cryo-TEM images of coexisting microemulsion networks at T ) 24.4 °C: (A) dilute (high water content) and (B)
concentrated (low water content) phase. In both images one can identify 3-fold junctions (arrows).
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are a direct consequence of an effective attraction within
the ME networks due to the translational entropy of the
junctions. This attraction is proportional to the number
density, F, of the junctions which scales exponentially with
their curvature energy, ε, like F ∼ φo

3/2e - ε/T. The ME

separates into two network phases when the junction
curvature energy is below a critical value εc ∼ 2 corre-
sponding to a critical junction density Fc ∼ 0.03 (in units
of 1/r3), where attraction first overcomes the repulsion
between neighboring fluctuating cylinders. Due to the

Figure 4. Cryo-TEM images of microemulsion micrsotructures along the EF line: (A) at φo ) 3% and T ) 26.5 °C, where the
structure is oil-swollen cylindrical micelles connected by 3-fold junctions (arrows); (B) the system at φo ) 0.755% and T ) 5 °C is
made of disconnected spherical oil-swollen globules (arrowheads) coexisting with relatively short (a few tens of nanometers) cylindrical
threads (arrows); (C) at a very low temperature of T ) 2 °C and at φo ) 0.613 the observed microstructure is that of monodisperse
oil-swollen spheres.
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nonmonotonic dependence of the curvature energy ε(r) on
the cylinder radius, r (which scales such as r ∼ φo/φs), the
resulting phase separation region is a closed loop bounded
by two critical points.10

Consistent with this picture, we observe ME networks
along the 2 line from the critical end point (Figure 2A at
φo ) 3%, T ) 30 °C) through the double critical point
(Figure 2B, at the minimum in Figure 1B, φo ) 0.7%, T
) 23 °C) toward a binary solution. A typical cryo-TEM
micrograph of network phase is shown in Figure 2A:
swollen oil-in-water cylindrical tubes describe the local
structure. One can easily identify many 3-fold junctions
(large arrows) connecting these semiflexible tubes, thus
forming a network. The typical length of the tubes
(distance between neighboring junctions) is a few tens of
nanometers with a rather broad distribution, in accord
with the exponential distribution suggested by theory.
The radius of the tubes is about 5 nm, close to the
theoretical value determined by volume and surface
conservation. The tubes in the picture are semiflexible
with a persistence length of about 10-20 nm. Although
much less numerous, one can find disconnected network
fragments that may be related to shearing during speci-
men preparation. The few four-way “crossroads” mark
entanglement points or the rare 4-fold junctions (ar-
rowheads). The black dots indicate cylinder ends pointing
outside the image plane or a folded thread (noted by a
small arrow). Following the 2 line to lower oil content
(Figure 2B) the topology of local cylindrical structures
connected by 3-fold branching points is unchanged. Note
that the cylinders are now thinner due to lower oil content.
Since the planar cut defined by the constant weight ratio
is close to the line of critical points, the number density
of the junctions along the 2 line is expected to scale as the
critical value, Fcr-3 ∼ Fc(φs/φo)3. This is qualitatively
supported by the measurements that indicate denser
networks as we approach the binary system (φo f 0).

Within the two-phase closed loop, the predicted coexist-

ence into concentrated (upper) and dilute (lower) network
phases was indeed observed. This continuous phase
separation occurs close to the double critical point, T-,
where the closed loop is relatively small (the minimum of
2). Figure 3 shows the coexisting ME networks of a
system whose temperature is slightly above this double
critical point, at T ) 24.4 °C and φo ) 0.76%. In both
cryo-TEM micrographs of the lower (Figure 3A) and the
upper (Figure 3B) phases one can identify the network
topology formed of 3-fold junctions (arrows) interconnect-
ing the oil-in-water cylindrical tubes. As predicted, the
two networks in Figure 3 are of equal cylinder radius, r,
and differ only in their junction density, F. At higher
temperatures, where the closed loop has already widened,
the network topology was observed in both concentrated
and dilute phases, but in the dilute phase we also found
disklike shapes. If the temperature is further increased,
a three-phase body is formed. In the dilute (lower) phase,
we found only disconnected structures, due to their higher
entropy. Their shapes range from spherical to disklike
shapes due to the small spontaneous curvature. Similar
bicontinuous ME networks were observed even along the
EF line, where previous theoretical studies predicted a
discontinuous topology of spherical droplets.11 The EF of
networks, as manifested experimentally by observation
of networks coexisting with an excess phase, agrees with
the prediction of the network model: It suggests that the
same mechanism leading to the rejection of excess phase
by droplets at their optimal curvature, far from Th , induces
EF also in a ME network. The model shows that EF results
from the optimization of the local geometry (i.e., the mean
curvature of the surfactant monolayers) and is therefore
insensitive to the global geometry of disconnected globules
or connected network.16 Figure 4A shows a typical cryo-
TEM image in the one-phase channel slightly above the
EF line at φo ) 3% and T ) 26.5 °C. The structure is
similar to that of Figure 2, with oil-swollen cylindrical

(16) Tlusty, T.; Safran, S. A.; Strey, R. To be submitted for publication.

Figure 5. Approaching the binary micellar system (φo ) 0.028) at T ) 2 °C, the system is comprised of cylindrical structures
(arrows) in coexistence with spheres (arrowheads), as seen by cryo-TEM.
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micelles connected by 3-fold junctions (arrows). Similar
networks were observed down to T ) 9 °C where the EF
line is at φo ) 1% (Figure 1B).

Following the EF line to lower temperatures induces a
topological transition: Figure4Bshowsthemicrostructure
of the ME on the EF at T ) 5 °C and φo ) 0.755%; the
system is comprised of disconnected spherical oil-swollen
globules (arrowheads) coexisting with relatively short (a
few tens of nanometers) cylindrical threads (arrows). This
is in qualitative agreement with theory that predicts a
network breakup in regions where the higher entropy of
the disconnected cylinders overcomes the higher curvature
energy of their end-caps relative to the network junctions.16

Finally, when we further decreased the temperature to T
) 2 °C (at φo ) 0.613) the observed structure is that of
rather monodisperse oil-swollen spheres (Figure 4C) as
predicted by comparison of their curvature energy to that
of the cylinders.16,17 This is in accord with previous
experimental studies of EF using freeze-fracture electron
microscopy,4 NMR,5 small angle neutron scattering
(SANS),6 and light scattering.7 Approaching the binary
micellar system (by decreasing the oil content down to φo
) 0.028%) while keeping the same temperature as in
Figure 4C (T ) 2 °C), we return to cylindrical structures
(arrows) in coexistence with spheres (arrowheads) (Figure
5) as observed in the pure binary system.13 In the binary
system, networks were observed at higher temperatures,
below the two-phase separation curve (with critical

temperature Tc ) 31.5 °C). This roughly locates a
connected/disconnected topological transition line depart-
ing from the EF line at a temperature between 5 and 8
°C and increasing with T as oil content is lowered (Figure
1B).

Conclusions

The theoretical model predicts that the same physics
of entropic interactions within semiflexible networks that
govern swollen ME may also determine the structure and
phase behavior of certain binary micellar solutions. Our
study supports this prediction experimentally by the
observation of network topology in the vicinity of the binary
critical point. In contrast to past theories that explained
phase separation and criticality as resulting from in-
creasing attraction between growing micelles,18 we suggest
an explanation within the same context of ME networks:
19 The binary critical point and the phase separation are
naturally described as the φ of 0 limit of the ME critical
point and two-phase coexistence region.
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(17) NMR and SANS measurements indicate a cylinder to sphere
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Abstract. We predict theoretically the gradual formation of fluctuating, connected microemulsion
networks from disconnected cylinders as the spontaneous curvature and the radius are varied, in
agreement with recent direct measurements of these topological transitions. We discuss the role of
the topological defects, the network junction and the end-cap of the disconnected cylinders, in the
connectivity transition. The optimal shapes and curvature energies of the junctions and end-caps
are calculated numerically and compared with analytic approximations.

1. Introduction

Microemulsions (ME), dispersions of polar (water) and non-polar (oil) fluids and amphiphile,
exhibit an extremely rich variety of geometries. This behaviour is attributable to the
amphiphilic molecules which reside at the interfaces between water and oil, thus reducing
the bare water–oil tension by 3–5 orders of magnitude; this drastic reduction enables the
formation of mesoscopic water and oil domains defined by amphiphilic interfaces which
can assemble in many different shapes and sizes. Among these topologies, the multiply-
connected symmetric sponge, in which the water and oil domains are both continuous, has
been extensively studied [1]. These bicontinuous structures are observed around the inversion
temperature, T̄ , where the preferred curvature of the amphiphilic monolayer towards water or
oil (the spontaneous curvature) vanishes. Away from T̄ , this bicontinuity disappears and the
amphiphilic monolayers were traditionally thought to form disconnected globules surrounded
by a continuous domain of the other component.

Preliminary data from self-diffusion NMR and conductivity measurements [2,3] suggested
the existence of bicontinuous structures even far from T̄ , where one would have expected
a phase of disconnected globules [4]. Recently, we proposed a model for ME based on
thermally fluctuating asymmetric bicontinuous networks, whose building blocks are cylinders
interconnected by junctions [5]. Our model provides a direct link between the structural
bicontinuity and the striking thermodynamic features that ME exhibit around T̄ : the generic,
critical, re-entrant two-phase separation and the subsequent formation of a three-phase region
[6] together with its remarkable ultra-low values of the three tensions at the interfaces [7] are
all direct results of an entropic attraction induced by the network fluctuations. Moreover, the
model explains the universal scaling properties observed in recent experimental studies by Strey
and Sottmann, that show data collapse of both the phase diagrams [8] and tensions [9] of 19
different non-ionic ME systems. The latest, most conclusive evidence to support the network
picture was provided by Bernheim-Grosswasser and Talmon who used cryogenic transmission

0953-8984/00/SA0253+10$30.00 © 2000 IOP Publishing Ltd A253



A254 T Tlusty and S A Safran

electron microscopy (cryo-TEM) to directly observe the dilute, semi-flexible networks with
their typical threefold ‘Y-like’ junctions [10], in both the single-phase and two-phase regions.

The fluctuating network model consistently predicts the topological transitions observed in
ME when the spontaneous curvature, c0, is decreased (in non-ionic ME, c0 is controlled by the
temperature as c0 ∼ T −T̄ ): first, the ME evolves from spherical globules to long cylinders that
subsequently interconnect via threefold junctions, leading to the formation of the bicontinuous
network. The junctions interconnecting the cylindrical branches of the network are one type of
topological defect of the infinite cylinders with a defect energy cost of the junction curvature
energy, ε3, relative to the cylinder bending energy. As usual, the defects are stabilized by the
additional entropy that they afford the system since they increase the possible configurations
of the ME network. We show below how this interplay between curvature energy and the
network configurational entropy determines the network topology and the related free energy.
Similarly, in ME composed of disconnected cylinders, the length distribution is determined by
the balance between the curvature energy required to form the end-caps of the cylinders, ε1,
and their translational entropy. Moreover, we show that the connectivity transition when the
network is formed from disconnected cylinders takes place when the junction and the end-cap
energies are comparable, ε3 � ε1 [11]. All this makes an accurate estimate of the curvature
energies of these two types of topological defects a crucial ingredient of our theory, essential
for understanding the relation between structure and thermodynamics and for comparison with
experiment. In this paper, we briefly discuss the main concepts and results of the model, and
present for the first time a calculation of the end-cap and junction curvature energies.

2. Network free energy and phase behaviour

Within the network, one can identify two length scales: the local length scale is the radius of
the cylinders, R, that is governed by the curvature energy of the amphiphile interface. The
non-local, large-scale length is the typical distance, L, between the network junctions, which
is governed by the translational entropy of the junctions. Our theory traces the progression
of the microstructure from the curvature-governed dilute network, L � R ∼ c−1

0 , to the
strong-fluctuation regime, where the junction defects proliferate, the typical distance between
junctions becomes comparable with their size, L ∼ R � c−1

0 , and they form a dense sponge.
As predicted by theory and confirmed by experiment [10], the bicontinuous ME network

first appears at high spontaneous curvature, far from T̄ . In these regions, one can neglect the
effect of short-wavelength thermal fluctuations and the local geometry of the ME is determined
solely by the curvature energy of the amphiphile interface:

Fe = 1

2
κ

∫
dS

(
1

R1
+

1

R2
− 2c0

)2

+ κ̄
∫

dS

(
1

R1

1

R2

)
(1)

where R1 and R2 are the principal radii of curvature, κ is the bending modulus and κ̄ is the
saddle-splay modulus. We discuss the sequence of transitions leading to the formation of the
cylinders and then focus on their interconnection to form a bicontinuous network, a process
governed by the entropy and the energetics of the junctions and the end-caps.

For bending constants, κ � kBT , the curvature energy dominates and the free-energy
density scales as fe = Fe/V = φr−3E(r), where φ is the volume fraction of the inner phase
(oil or water) and r = c0R is the ratio of the radius to the optimal radius of curvature; E(r) is
the scale-invariant curvature energy. To find the stable local structure we compare the curvature
energy of three possible geometries, spherical, cylindrical and lamellar. In a single phase the
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radius is determined by the volume-to-surface ratio:

R = 2δ
φ

φs
(2)

where the volume fraction of the surfactant is φs and δ is the surfactant chain length (R is the
cylinder radius, which is two-thirds of the sphere radius, and twice the inter-lamellar distance).
The curvature energy of the cylinders is

Ec(r) = κ(1 − 4r) (3)

while for spheres Es(r) = 8
9 (2κ(1 − 3r) + κ̄), where Es and Ec are measured relative to the

curvature energy of the lamellae El = 0. Comparing the curvature energies, one finds that
the lamellae are optimal for r < 1

4 (this region may be accessed by approaching the inversion
temperature, T̄ , or alternatively by reducing the radius, R). As r increases there occurs a
transition to cylinders, followed by a transition to a region where they coexist with spheres
(around r � 7

12 + 2
3 κ̄/κ), and finally to a pure phase of spheres [4, 11].

The global structure of the cylindrical ME [4] is governed by entropy, due to the thermal
fluctuations of its topological defects, the junctions and the end-caps [12]. To estimate the
free energy, consider the network formed by an ensemble of cylinders of various lengths.
The number density of cylinders of length m is X(m), which obeys the volume conservation,∫
mX(m) dm = φ. The branches are interconnected by z-fold junctions that each cost an

energy εz (relative to the cylinders) due to their curvature. The number density of the junctions
is z times smaller than the number density of free ends of the disconnected cylinders:

ρz = 2

z

∫
X(m) dm.

To obtain the free-energy density (in units of kBT ), one needs to take into account, apart from
the translational entropy of the free cylinders (the first term of equation (4)), the curvature
energy of the junctions (the second term) and the entropy (the last term) lost when each set of
z free ends is constrained to form a junction [13]:

fn =
∫
X(m)(lnX(m)− 1) dm + ρzεz − (z− 1)ρz ln ρz. (4)

Minimizing the free energy (equation (4)) with respect to the length distribution X(m), one
finds that the junctions behave as an ideal gas of defects, in the sense that the entropy is kBT per
junction, fn = −ρz. The connectivity of the network together with the conservation laws for
X(m) imply that the number density of junctions, ρz, and the free energy scale as follows [13]:

fn = −ρz ∼ φz/2e−εz . (5)

The z = 1 case corresponds to disconnected cylinders terminating at end-caps. The z = 2
‘junctions’ may describe a one-dimensional system of defects along one infinite cylinder.
These perturbations are taken into account by the thermal fluctuations of the cylinders, and
become important only close to the cylinder ↔ sphere transition, where the curvature energy
of cylinders exceeds that of spheres. Connected networks are formed only for z � 3. Hereafter
we consider only z = 3, Y-like junctions and z = 1 end-caps. In general, junctions of higher
coordination number, z > 3, are also feasible, but occur very rarely [10]. This results from
the φz/2-scaling of the network free energy that favours low-z networks when the system is
dilute, φ � 1. High-genus junctions are also unfavourable due to the saddles introduced by
their shape (topologically, each junction corresponds to z/2 − 1 handles). For the connected
network (z = 3) the exponent ( 3

2 ) governing the dependence of the free energy on the volume
fraction is higher than linear, resulting in an effective attraction. When the network is broken
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into free cylinders (z = 1), the ideal gas of junctions is replaced by an ideal gas of end-caps,
of number density ρ1, that each cost curvature energy ε1.

The network starts to form when the number of junctions exceeds the number of end-caps,
at ρ1 � ρ3. Comparing the topology-dependent part of the network free energy (equation (5))
for junctions and end-caps, we find that apart from a logarithmic correction, the network
forms when the energies of the two defects are equal. The critical volume fraction for the
cylinder-to-network transition is thus given by [11]

ε3 − ε1 � ln φ. (6)

The contribution of the Gaussian curvature,K = 1/(R1R2), to the elastic energy (equation (1))
is, by the Gauss–Bonnet theorem, a topological invariant determined solely by the total number
of junctions and end-caps. The threefold junction and the end-cap have opposite topological
contributions of −4πκ̄(z/2 − 1) = ±2πκ̄ [11]. The resulting 4πκ̄ difference between the
curvature energies of the two defects may have implications for the ME structure and phase
diagram, as discussed below.

3. Junction and end-cap shapes and energies

Apart from the difference in topology of the end-caps and junctions and the consequent
saddle-splay energies, one needs to minimize the curvature energy due to the deviation of the
mean curvature, H = 1

2 (1/R1 + 1/R2), from its preferred value, the spontaneous curvature,
2κ

∫
(H − c0)

2 dS. The construction of a defect requires amphiphilic molecules and an inner
phase which need to be taken from the cylinders. This is taken into account by considering the
cylinders as a large reservoir coupled to the defects by its chemical potentials (surface tension
and osmotic pressure):

εz = Fz −
(
∂Fc

∂S

)
V

Sz −
(
∂Fc

∂V

)
S

Vz (7)

where Fz is the curvature energy of the defect (equation (1) for a junction or end-cap), Vz its
volume and Sz its surface area; the chemical potentials are derivatives of the cylinder curvature
energy, Fc = φr−3Ec(r)V with respect to change in their surface and volume. Substituting
the cylinder curvature energy Ec (equation (3)) in the potentials of equation (7) results in a
scale-invariant defect energy:

εz = 2κ
∫

dsz (h
2 − 2rh)− κ

(
3

2
− 4r

)
sz − κ(4r − 2)vz (8)

where r = c0R, h = HR, sz = SzR
−2 and vz = VzR

−3 are the normalized spontaneous
curvature, mean curvature, surface area and volume, respectively. The effective osmotic
pressure, % = κ(2 − 4r), becomes negative for r > 1

2 . This manifests the instability of the
cylinders to emulsification failure—that is, the rejection of the excess internal phase to optimize
the curvature energy [14]. Functional minimization of equation (8) yields cumbersome Euler–
Lagrange equations which were numerically solved only for the simplified case of axial
symmetry [15]. Below, we describe the results of a direct numerical minimization using
the optimization code SURFACE EVOLVER [16] and compare them to those obtained by a
simplified single-parameter variation approach, which provides some physical insight into the
exact results of the simulation. The structures of both junction and end-cap were confirmed in
recent measurements by Bernheim-Grosswasser and Talmon [10, 11].

Two typical, numerically optimized junctions are depicted in figure 1. The amphiphile
interface is represented by an open triangulated grid of points which evolve under the influence
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Figure 1. The optimal shape of the threefold ‘Y-like’ junction. Numerical optimization at high
curvatures, r = c0R = 0.5, shows that the junction develops an enlarged spherical core with necks
connecting to the cylinders (top). At smaller spontaneous curvatures, r = c0R = 0.3, we find
that the junction develops a lamellar core, reflecting the fact that the system approaches the region
where flat lamellae are the preferred local geometry (middle). This shape is similar to the analytic
approximation (bottom), a lamellar core smoothly attached to three semi-toroidal segments. Each
semi-toroidal segment is a sixth of the inner part of the torus. The smooth connections to the
cylinders are denoted by dark rings.
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of pseudo-forces derived from the energy integral (equation (8)) [16]. The boundary conditions
are smooth connections of the minimized junction interface to three coplanar cylinders of
radius R = 1 (since the problem is scale invariant) meeting at angles of 2

3π . Observing the
progression of the shape of the junction as the spontaneous curvature is changed, we find two
regimes. At small spontaneous curvatures, r = c0R < 0.3, we find that the junction develops
a lamellar core, reflecting the fact that the system approaches the region where flat lamellae
are the preferred local geometry. At higher curvatures, 0.3 � r < 0.5, we approach the region
of spherical local geometry and the junction develops a spherical core with necks connecting
to the cylinders. When we further increase the curvature, to r > 0.5, we find that the junction
is unstable with respect to emulsification failure. In simulation, this instability is manifested
by the ‘explosion’ of the core. The numerical minimization yields an approximately linear
scaling of the junction energy with the spontaneous curvature (figure 2):

ε3 � 4πκ(α3r + β3) (9)

with α3 � 1.3 and β3 � −0.5. We note that the ε3 becomes negative for r < −β3/α3 � 0.38,
even before the stable local geometry becomes lamellar. In simulation, junctions in this region
tend to split into three junctions by puncturing the middle core. However, these negative-energy
junctions may still be stabilized by three additional effects:

(i) For small enough saddle-splay modulus, κ̄ , the topological ‘charge’ of the junction, −2πκ̄ ,
may overcome the negative ε3.
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Figure 2. Curvature energy of the defects. Numerical optimizations of the curvature energy
of junctions (ε3—solid squares) and end-caps (ε1—solid circles) exhibit an approximately linear
scaling in r = c0R (linear fits—solid lines). Junctions are optimal for small values of the normal-
ized spontaneous curvature, r , due to their flat lamellar core, while end-caps are preferred at larger
r because of their spherical cap. The numerical results are compared to the analytic approximations
(dotted lines).
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(ii) When the junctions proliferate they repel each other due to the curvature energy cost of
the finite-length cylinders whose shape and energies have been modified by the nearby
junctions.

(iii) As we discuss below, when the radius of the cylinders becomes comparable with the
thickness of the amphiphile interface, one should introduce higher-order terms into the
curvature energy.

An analytical approximation to the junction interface is depicted in figure 1: the junction
is constructed from a lamellar core smoothly attached to three semi-toroidal segments of inner
radius R = 1 and outer radiusRT , which is the parameter to be optimized. Each semi-toroidal
segment is a sixth of the inner part of the torus. Integrating equation (8) over the surface of
the junction we obtain

ε3 = πκ

(
2τ 2

√
τ 2 − 1

arctan

√
τ + 1

τ − 1
+

(√
3

π
− 1

2

)
τ 2 − 1

2
πτ +

1

3
(8r − 7)

)

where τ = RT /R is the ratio of the outer and inner radii of the torus. Minimizing the latter
expression, we find that optimal outer radius, and thus the junction shape, is independent of
c0, with τ = RT /R � 2.59. The resulting junction energy is ε3 � 4πκ( 2

3 r − 0.13). This
analytical approximation (figure 2) exhibits the same qualitative behaviour as the numerical
solution of equation (9). The energy reflects the interplay between the tendency to enlarge
the preferred lamellar core and the need to keep the outer radius of the torus small enough
to compensate by its negative curvature, 0 � 1/R1 � −1/RT , the positive curvature of the
circular cross section, 1/R2 = 1/R. However, the approximation strongly deviates from the
numerical solution for small r , mainly because the lamellar core cannot adjust its thickness,
which is constrained to be equal to the diameter of cylinders. One may improve the poor
agreement with simulation by relaxing this constraint, adding the ratio of core and cylinder
widths as a second variational parameter [12].

The optimized shape of the end-cap, ε1, exhibits an opposite dependence on the parameter
r = c0R (figure 2): due to their enlarged spherical cap (figure 3) the end-caps cost more
curvature energy at small r , where the preferred geometry is lamellar. The numerical
minimization yields

ε1 � 4πκ(α1r + β1) (10)

with α1 � −0.84 and β1 � 0.54. To obtain an analytical approximation we describe the
end-cap as composed of two parts: a semi-spherical cap smoothly connected to the cylinder by
a constant-mean-curvature, trumpet-like interface (figure 3). The axially symmetric interface
is described by the profile of the radius y(z) determined by the constant-mean-curvature
constraint [15]:

sin θ = (1 + (∂zy)
2)−1/2 = (y + RsR/y)/(R + Rs)

where Rs is the radius of the spherical cap to be optimized; the principal curvatures are
1/R1 = sin θ/y and 1/R2 = dy sin θ . The resulting curvature integral (equation (8)) is

ε1 = 1

3
πκ

[
µ

(
µ

µ + 1
(4µ2 + µ− 8)− 4[µ(2µ− 3) + 2]r + 7

)
E

(√
1 − µ−2

)

+
(
µ(4µ− 9)− 8[(µ− 3)µ + 3]r

)
+ 2µ(2r − 1)K

(√
1 − µ−2

)
+ 12

]

where µ = Rs/R is the ratio of the sphere and cylinder radii. Optimizing the radius of
the spherical cap, we obtain from the latter expression ε1 = 4πκ(−0.68r + 0.47), in good
agreement with the numerical solution (equation (10)), as depicted in figure 2. Here, the small
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Figure 3. The optimal shape of the end-cap. The typical enlarged spherical cap is smoothly
connected to the cylinder by a trumpet-like interface (these connections are denoted by dark rings).
The numerical optimization shows no significant difference between the shapes of the optimal
end-caps at high curvature (top—r = c0R = 0.5) and low curvature (middle—r = 0.2). The
analytic, constant-mean-curvature approximation yields a similar shape (bottom).

deviations occur mainly because of a neck between the ‘trumpet’ and the cylinder that develops
in simulation in the small-r region (figure 3).

The difference in elastic energy of the junction and end-cap, as calculated by the numerical
or variational minimization described above, scales approximately linearly with r:

ε3 − ε1 = 4πκ((α3 − α1)r + (β3 − β1))− 4πκ̄

where the last term accounts for the opposite topological ‘charge’. Junctions are optimal for
small values of the normalized spontaneous curvature due to their flat lamellar core, while
end-caps are preferred at larger r because of their spherical cap (figures 1–3). Substituting
in equation (6) produces an expression for the value of r = c0R at the cylinders-to-network
transition at r = rn with [11]

rn = 1

α3 − α1

(
(β1 − β3) +

κ̄

κ
+

1

4πκ
ln φ

)
. (11)

The theoretical prediction described above, for the series of topological transitions leading to
the formation of a network, spheres → spheres + cylinders → cylinders → network, was
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recently substantiated by direct cryo-TEM measurements on non-ionic ME [10].
To accurately describe the elastic energy of ME systems with relatively small radii of

curvature R ∼ δ, and especially to approach the limit of binary micellar ME (with no
internal phase), one needs to take into account the details of the molecular interactions [12].
Here we approximate these effects by adding to the harmonic bending energy the next-
order term, of third order in the principal curvatures. Expanding the elastic energy (equ-
ation (1)) for curvatures at a parallel surface, we find that the third-order term is proportional
to κδ(c0 − H)(H 2 + c0H − K). We consider only the surface integral over H 3 and HK ,
since all other third-order terms contain powers of c0 and therefore vanish in the binary limit,
r = c0R = 0; for large values of r these terms are negligible compared to the harmonic
bending energy. Using our results for the typical shapes of the end-cap and junctions, we find
that this contribution, 2κδ

∫
dS (KH − H 3), is negative for the end-cap and positive for the

junction and scales as

ε̄z = γzκ
δ

R
= γzκ

c0δ

r
(12)

with γ1 < 0 and γ3 > 0, both of order unity. The third-order term, ε̄z, inverts the behaviour of
εz close to the binary limit, r = 0 (the actual radius at the binary limit is the molecular length,
r � c0δ). We therefore find a maximum in ε1 and a minimum of ε3 at typical radii which scale
like R∗ ∼ (δ/c0)

1/2 (or r∗ ∼ (c0δ)
1/2).

The minimum in ε3 has important implications for the ME phase diagram. The
bicontinuous network exhibits a unique instability which directly results from its global
connectivity: the entropic part of the free energy is unstable to phase separation when the
effective attraction, fn = −ρz ∼ −φz/2e−ε , overcomes the repulsion. This occurs for values
of the junction energy lower than a critical value. Since φz/2 represents an effective attraction
only if the exponent is higher than linear (or z � 3), we find that this type of phase separation
is unique for the connected structures. The curvature energy of the junction exhibits a minimal
value at r∗ which corresponds to a steep maximum of the attraction due to its exponential
dependence ∼e−ε3 . When the maximal attraction exceeds the critical value, the ME phase
separates into two networks of the same local geometry, cylindrical of radius r , which differ
in the density of junctions, as verified by experiment [10]. This explains the re-entrant phase
separation loops and the subsequent three-phase coexistence, which emerge as direct results
of the non-monotonic behaviour of the junction energy, ε3(r) [5]. In the phase diagram this
global instability is manifested by the appearance of a two-phase coexistence loop bounded
by two critical points.
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dance. But, if we assume that the true iron
abundance of the hot interstellar medium is
solar, then we might be forced to infer that only
30% of the diffuse emission is actually thermal.
Despite the observation of thermal line emis-
sion, it is thus difficult to rule out a component
of diffuse emission from inverse Compton scat-
tering. Assuming that the hard diffuse emission
contains a major component of thermal origin
(30 to 100% of the total) and integrating over
the Gaussian elliptical region, we estimate that
the plasma has a temperature of ;T . 40 MK
and pressure of the order of P/k . 109 cm23.

It seems quite likely that the hot compo-
nent is not in hydrostatic equilibrium and is
the basic driving force for the galactic wind
outflowing perpendicular to the plane of
M82. This hot x-ray–emitting gas is thus
overpressurized as compared to the galaxy’s
gravitational potential well and is thus prob-
ably the principal driving mechanism for the
hot outflow of chemically enriched material
into the intergalactic medium. Such high-
temperature plasmas in the cores of starburst
galaxies may be the basic drivers for the
chemical enrichment of the intergalactic me-
dium and the intracluster medium within
clusters of galaxies.
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Defect-Induced Phase
Separation in Dipolar Fluids

T. Tlusty* and S. A. Safran*

A defect-induced, critical phase separation in dipolar fluids is predicted, which
replaces the usual liquid-gas transition that is driven by the isotropic aggre-
gation of particles and is absent in dipolar fluids due to strong chaining. The
coexisting phases are a dilute gas of chain ends that coexists with a high-density
liquid of chain branching points. Our model provides a unified explanation for
the branched structures, the unusually low critical temperature and density, and
the consequent two-phase coexistence “islands” that were recently observed
in experiment and simulation.

The critical liquid-gas phase transition
(LGT) is a generic feature of simple fluids.
When the temperature is decreased below
the critical temperature, the simple fluid
phase separates into a low-density gas that
coexists with a high-density liquid. The
phase separation is well understood as the
consequence of a temperature-dependent
interplay between the entropy loss due to
hard-core repulsion and a short-range iso-
tropic attraction, as was first formulated by
van der Waals in his equation of state. In
contrast, the basic thermodynamics of di-

polar fluids, where the attraction is due to
long-range anisotropic dipolar forces, are
still obscure, including the basic question
of whether the LGT exists at all.

Dipolar fluids have numerous scientific
and industrial applications, mostly related
to the strong field-responsive properties of
colloidal ferrofluids (1) or electro-rheologi-
cal fluids (2). For these applications, it is
crucial to know whether the system exists
in a single homogenous phase. Dipolar flu-
ids also have theoretical significance as a
fundamental model of statistical mechan-
ics, perhaps the simplest example of an
anisotropic fluid, which may provide phys-
ical insight for polar fluids such as hydro-
gen fluoride or even water.

The mean dipolar interaction between
two particles is attractive (with a Boltz-
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mann weighted average due to mutual ori-
entation), which may lead one to conclude
within a mean-field theory that a LGT sim-
ilar to that exhibited by isotropic fluids
should also occur in dipolar fluids (3).
However, simulation studies (4–7 ) reveal a
completely different and more complex
scenario: The anisotropic dipolar interac-
tion, which favors a nose-to-tail alignment
of the dipoles (Fig. 1A), drives the particles
to self assemble in polymer-like chains
(Fig. 1B) (8, 9). The linear aggregation of
the chains is a one-dimensional process in
which no phase transition is expected to
occur. The absence of the LGT has been
attributed to the strong chaining that inter-
feres with the isotropic aggregation (7, 10–
12).

Large-scale computer simulations have
found evidence for the occurrence of a criti-
cal liquid-gas transition in a system of hard
spheres with solely dipolar interactions (13);
however, the estimated critical temperature
and density are unusually low in comparison
to simple fluid values. In the proximity of the
critical point, the simulated dipolar spheres
assemble in chains with apparent branching
points. Thermodynamic measurements found
evidence for a critical liquid-gas transition in
magnetic fluids consisting of ferric oxide
nanospheres (14). However, in this colloidal
fluid it is difficult to separate the effect of the
dipolar interaction from the short-range iso-
tropic attraction (15).

Motivated by these experimental and sim-
ulation studies, we consider a model whose
basic components are not the dipolar spheres
themselves but the ensemble of self-assem-
bling chains they form, allowing us to focus
on the collective large-scale features of the
system. The dipolar fluid consists of identical
spheres of diameter D carrying a magnetic
moment of amplitude m. The dipolar interac-
tion between two spheres whose dipoles are
mW 1, mW 2, and are separated by a distance rW is

U 5
1

r3 ~mW 1 z mW 2! 2
3

r5 ~mW 1 z rW!~mW 2 z rW! (1)

The natural dipolar energy unit is that of two
spheres at contact, ud 5 m2/D3, which defines
the reduced temperature, T * 5 T/ud. The
maximal possible dipole-dipole attraction is
–2ud, obtained when the two spheres touch at
nose-to-tail alignment, which is twice the
attraction of antiparallel side-by-side dipoles
(Fig. 1A). At low temperatures, T * ,, 1, this
strong anisotropy favors the linear aggrega-
tion of the spheres that are concatenated in
the chains (Fig. 1B). The dipolar interaction
is also long-range due to its r23 decay. Nev-
ertheless, in the absence of external magnetic
field a thermodynamic limit exists (16) and
the interaction becomes “nearly short range”
for one-dimensional objects (17). Thus, we
treat the chains as an ensemble of self-assem-

bling, “living” polymers that are free to
break, reform, and exchange spheres.

In a certain regime of relatively low tem-
peratures and densities, the chains will fur-
ther organize and will interconnect via three-
fold junctions into a network. This branching
occurs when it is energetically favorable to
construct junctions from chain ends at the
expense of the reduction of their translational
entropy (Fig. 1C). Both topological defects,
ends and junctions, cost dipolar interaction
compared with the lower energy state of an
infinite chain. However, the introduction of
either kind of defect increases the entropy
and is therefore favored at finite temperature.
The energy cost of a free end, ε1, is larger
than that of a junction, ε3. At low tempera-
tures, this energy difference drives the forma-
tion of a network (18).

Our model of dilute dipolar fluids at low
temperatures as self-assembling networks en-
ables us to apply theoretical tools that were
originally developed to treat living polymers
(19), micellar solutions (20), and, recently, mi-
croemulsion networks (21, 22). The starting
point of the model is the probability that a chain
starts or terminates at a point Wr, c( Wr ) (23). The
probability for a chain crossing through Wr is
proportional to c( Wr )2, because one may think
of each monomer as the confluence of two
chain ends. Within our mean-field model, it
directly follows that the volume fraction of
spheres scales like f ; c2. The concentration
of ends is c multiplied by a Boltzmann factor
that accounts for the energetic cost of an end
defect, r1 ; ce2ε1/T* ; f1/2e2ε1/T*, where the
defect energies are measured in units of ud.
Similarly, we find that the concentration of
threefold junctions, that require the confluence
of three ends, scales like r3 ; c3e2ε3/T* ;
f3/2e2ε3/T*. Calculation of the free energy
yields the standard result for systems gov-

erned by an interplay between the energy
and entropy of topological defects. Each
defect, whether it is a threefold junction or
an end, contributes 2kBT (where kB is the
Boltzmann constant) to the free energy den-
sity (24 )

f 5 2r1 2 r3 1 1/2f2 5 2 ~2f!1/ 2e 2 ε1/T *

2 1/3~2f!3/ 2e 2 ε3/T * 1 1/ 2f2 (2)

where the third term accounts for the excluded
volume repulsion between chains. Examining
the osmotic pressure, p 5 f2]f( f /f ) 5
1/2f2 1 1/2(r1 – r3), we find two opposing,
topologically induced thermodynamic forces,
a repulsion due to ends and an attraction due
to junctions.

The dipolar fluid phase separates when
the attraction of the dipolar junctions over-
comes the repulsion due to ends and the
excluded volume entropy loss. This phase
separation occurs only below a critical tem-
perature, Tc

*, located at the point where the
coexistence curve meets the spinodal curve,
the boundary of thermodynamic stability,
]f

2 f 5 0 (Fig. 2). Analysis of the free energy
yields the critical temperature and volume
fraction

Tc
* 5

ε1 2 3ε3

3 ln 3 2 2 ln 2
,

ln fc 5 2
ε1(2 ln 3 2 ln 2) 2 ε3 ln 2

ε1 2 3ε3
(3)

The critical point has a remarkable topologi-
cal significance. In analyzing f we find that
the number of ends and junctions are equal
r1 5 r3 at the critical point, which is thus a
point of connectivity transition in the system
(25, 26).

Indeed, the dipolar fluid separates into
two isotropic phases, but the nature of the
“liquid” and “gas” phases is different from

Fig. 1. (A) The dipolar
attraction between
two spheres in nose-
to-tail alignment (left)
is twice the attraction
of side-by-side spheres
(right). (B) At low tem-
peratures and densi-
ties, this anisotropy
drives the particles to
self assemble in ther-
mally fluctuating poly-
mer-like chains. (C)
The numerically opti-
mized shape of the
threefold junction. The
“Y-like,” almost sym-
metrical fork shape of
the junction has lower
energy than the end
defect, leading to the
formation of connect-
ed networks. (D) A
photograph of a similar configuration that is obtained when one brings three chains of magnetic
marbles (D . 1.5 cm) in close proximity; they attract and form a stable junction.
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that of simple fluids. The basic “particles” in
our model are not the individual dipolar
spheres but the topological defects—the net-
work junctions and free ends. Whereas the
free energy of an individual sphere saturates
to an almost constant value due to the strong
dipolar attraction in the chains, the global
structure and thermodynamics are governed
by the entropy of the defects in accord with
the isotherms of Camp et al., which exhibit
approximately constant free energy per
sphere over almost one decade of increasing
density in the regime of phase separation. The
liquid-gas transition is, therefore, analogous
to the demixing of a binary fluid consisting of
junctions and ends. In the low density “gas”
there are more ends than junctions (r1 . r3)
whereas the high density “liquid” is dominat-
ed by junctions (r1 , r3). Hence, the liquid
network is connected in the sense discussed
above, whereas the gas is composed of dis-
connected chains. In the phase diagram, these
two regions are separated by the connectivity
transition line (r1 5 r3) (Fig. 2).

To further substantiate our proposal that
the origin of the critical phase separation is
a connectivity transition, we demonstrated
that the energy cost of an end defect is
indeed higher than that of a threefold junc-
tion. The estimates from the simulations of
Camp et al. for the critical temperature and
volume fraction are Tc

* . 0.15 2 0.16 and
fc . 0.05 – 0.07, which correspond to
defect energies of ε1 . 0.67 and ε3 . 0.12,
respectively (Fig. 2). We then compared
these values to numerical estimates. The
end energy cost is simply half the energy
required to cut a continuous chain. Within
the nearest neighbor approximation, this
energy is ε1 5 1, and the upper limit ob-
tained for straight, infinite chain is ε1 5
z(2) . 1.65. The excess energy and the

“Y-like” fork shape of the optimal three-
fold junction are calculated by numerical
minimization (Fig. 1C). A similar shape is
obtained when one assembles three chains
of magnetic marbles (D . 1.5 cm) that
form an energetically stable junction (Fig.
1D). Upon its formation, the junction gains
one additional bond but loses more energy
due to deviations from the optimal nose-to-
tail alignment. This tunable balance results
in a junction energy, which is lower than
the end energy, as required. The estimate
for the junction energy, ε3 . 0.2 – 0.5,
reflects the analytical difficulties in mini-
mizing the long-range dipolar interaction
among the three finite, thermally fluctuat-
ing branches. The lower limits for ε1 and ε3

yield reasonable critical parameters, Tc
* .

0.20 and fc . 0.03, whereas the upper
limits give an unrealistically small critical
density.

The densities of both junctions and ends

decrease exponentially with decreasing tem-
perature, leading to exponentially longer
branches. The junction density, r3 ; e2ε3/T*,
decreases slower than the end density, r1 ;
e2ε1/T*, due to the lower defect energy.
Therefore, in the proximity of the critical
point, the junction attraction overcomes the
end repulsion and the coexistence region
expands. As temperature is further de-
creased, there are not enough junctions to
balance by their attraction the excluded
volume repulsion and the coexistence re-
gion narrows to very low densities (Fig. 2).
This reentrance might be masked by the
coexistence of the low-density gas with a
solid-like phase or a high-density magnetic
liquid (27 ). At low temperatures, we pre-
dict that the thermodynamically stable
structure is that of a dilute network with
many junctions and hardly any ends, in
accord with the branched structures exhib-
ited in simulations (4, 6 ). A crucial test of
our model in experiment or simulation may
be the observation of dipolar networks in
the vicinity of the critical point in both
coexisting phases (22).

The LGT of dipolar hard spheres is dif-
ficult to observe in simulations due to the
small scales of density and entropy and the
long relaxation times that stem from aniso-
tropic chaining (28). One can overcome the
strong anisotropy with the use of sphero-
cylindrical particles composed of two
hemispheres of radius D separated by a
cylinder of length L (Fig. 3A). In this sys-
tem, the degree of anisotropy of the near-
est-neighbor interaction can be tuned by
varying the aspect ratio L/D. At the optimal
aspect ratio, L/D 5 21/3 – 1 . 1/4, the
interaction energies of the nose-to-tail and
side-by-side alignments become equal. As
a result, the defect energies are reduced to
ε1 . z(2)/4 . 0.41 and ε3 . – 0.10. The
negative junction energy indicates that the
proliferating junctions are no longer ther-
mal defects but the dominant structural el-
ement, so our picture does not apply. The
attractive interaction, which is proportional
to number junctions, is also amplified and
the resulting LGT occurs more easily. The
optimal sphero-cylinders retain the ability
to cluster isotropically in three-dimensional
aggregates like simple liquid particles, as
seen in simulations (29). As the aspect ratio
L/D shifts from its optimal value, the ener-
gy of the junctions increases, which expo-
nentially decreases their number, and the
phase separation eventually disappears. In
the phase diagram, this nonmonotonic be-
havior is manifested by the appearance of
reentrant two-phase coexistence “islands”
(28, 29).

A similar enhancement of junction for-
mation may be achieved by the introduction
of a short-range attraction. Junctions ac-

Fig. 2. The phase diagram of the dipolar net-
work calculated for defect energies of ε1 5 0.67
and ε3 5 0.12. At the critical point (circle), the
coexistence curve (thick solid line), the phase
stability boundary (dashed line), and the con-
nectivity transition (dotted line) meet. The
lines denote the coexistence of the end-rich
“gas” with the junction-rich “liquid.” At low
temperatures, the coexistence region narrows
to very low densities.

Fig. 3. (A) The sphero-cylindrical particles are
composed of two hemispheres of diameter D
separated by a cylinder of length L. The in-
teraction energies of optimal sphero-cylin-
ders (L/D . 1/4) at nose-to-tail and side-by-
side alignments are equal, which reduces the
defect energies and leads to isotropic aggre-
gation and a critical phase separation similar
to that of isotropic fluids. (B) A similar effect
is achieved by the introduction of a short-
range attraction, d. The series of the calcu-
lated coexistence lines (solid) shows the pro-
gression, as the contact energy is increased
(for d 5 0, 0.08, 0.16, 0.24) from the reen-
trant coexistence curve (lowest value of Tc

*)
to a parabolic shape, typical to isotropic flu-
ids (highest value of Tc

*). The dashed line
follows the trajectory of the critical point.
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quire an additional contact point whereas ends
lose one when chains are broken. Accounting
for the contribution of the cohesive energy, d
(in units of ud) the defect energies shift like ε3

3 ε3 2 1/2d and ε13 ε1 1 1/2d. In particular,
the critical temperature increases like Tc

*3 Tc
*

11.05d and the reentrant coexistence curve
evolves to a parabolic shape, typical of isotropic
fluids (Fig. 3B). The crucial influence that the
shape of the particles, their short-range interac-
tion, and polydispersity have on their phase
behavior can therefore be tested by measure-
ment of the shape of the coexistence curve.
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Macroscopic Fibers and Ribbons
of Oriented Carbon Nanotubes

Brigitte Vigolo,1 Alain Pénicaud,1 Claude Coulon,1

Cédric Sauder,2 René Pailler,2 Catherine Journet,3*
Patrick Bernier,3 Philippe Poulin1†

A simple method was used to assemble single-walled carbon nanotubes into
indefinitely long ribbons and fibers. The processing consists of dispersing the
nanotubes in surfactant solutions, recondensing the nanotubes in the flow of
a polymer solution to form a nanotube mesh, and then collating this mesh to
a nanotube fiber. Flow-induced alignment may lead to a preferential orientation
of the nanotubes in the mesh that has the form of a ribbon. Unlike classical
carbon fibers, the nanotube fibers can be strongly bent without breaking. Their
obtained elastic modulus is 10 times higher than the modulus of high-quality
bucky paper.

Theoretical predictions (1, 2) and measure-
ments on individual objects (3–5) suggest that
single-walled carbon nanotubes (SWNTs) (6)
could form the basis of materials with excep-
tional mechanical and electromechanical prop-
erties. Despite their intrinsic rigidity and high
anisotropy, the currently available macroscopic
forms of SWNTs are isotropic and rather frag-
ile. These forms mainly consist of raw powder-
like materials originating from synthesis (7, 8),
suspensions in solvents (9), and thin mats,
known as bucky paper, obtained by drying
SWNT suspensions (10). Processing nanotubes
on macroscopic scales to obtain materials with
more practical uses is a major challenge. Here
we report a simple and versatile approach that
can create rigid fibers and ribbons of preferen-
tially oriented SWNTs (11). Our processing
consists of dispersing the nanotubes in surfac-
tant solutions and then recondensing the nano-
tubes in the stream of a polymer solution. In
contrast to most ordinary carbon fibers, SWNT
fibers can be strongly bent and even tightly tied
without breaking. Although they are still weak
under tension, these recently obtained SWNT

fibers are already 10 times stronger than high-
quality bucky paper, the main macroscopic
form of SWNT nanotubes used so far (12).

The raw material we used was produced
with the electric-arc technique (8). This tech-
nique produces SWNTs in the form of bun-
dles of a few nanotubes, along with a certain
fraction of carbon impurities and catalysts.
This material was sonicated in aqueous solu-
tions of sodium dodecyl sulfate (SDS), a
surfactant that adsorbs at the surface of the
nanotube bundles. At low surfactant concen-
trations, large and dense clusters of the initial
material were still found after sonication. The
amount of surfactant was too low to produce
an efficient coating and induce electrostatic
repulsions that could counterbalance van der
Waals attractions (13). At higher SDS con-
centrations, black and apparently homoge-
neous suspensions were obtained. These sus-
pensions did not coarsen or phase-separate
macroscopically over several weeks. Howev-
er, as revealed by optical microscopy (Fig. 1),
dielectric measurements, and electron mi-
croscopy of freeze-fractured samples, these
systems can in fact exhibit distinct phases. At
intermediate concentrations of SDS, SWNTs
were homogeneously dispersed and formed a
single phase. The viscosity of these systems
was almost that of pure water. In this regime,
the electrostatic repulsion provided by adsorbed
surfactants stabilized the nanotubes against van
der Waals attraction. However, at higher SDS
concentrations, a texture that reflected the for-
mation of light clusters was observed. The clus-
ters, which did not coarsen over several weeks,
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7.1 Summary of Theory and Results

The framework of our model is a self-assembling network whose building blocks are linear branches

interconnected by z-fold junctions. The physically relevant coordination numbers are z = 3 for the

network junctions and z = 1 for the “end-caps” of disconnected globules. In the case of microemulsions,

the branches are semi-flexible amphiphile tubes of water-in-oil or oil-in-water (Fig. 1.2), while in the

case of dipolar fluids they are linear chains of dipolar, colloidal particles (Fig. 1.3). The model is solved

by a mean field treatment [98] or by an equivalent spin n→ 0 approach [99, 100, 101] to give the same

result: Each topological defect, whether it is a 3-fold junction or an end-cap, yields a contribution of

−kBT to the free energy, f . Nevertheless, the number density of such defects, ρ, scales differently for
connected or disconnected topologies: ρ ∼ e−²φz/2, where ² is the energy cost of the defect and φ is the
volume fraction of the network. It follows directly that the osmotic pressure, π = φ∂φf − f ∼ 1− z/2,
is positive for free branches (z = 1) while for networks (z ≥ 3) the osmotic pressure is negative, a clear
indication for the topologically induced attraction.

The effective attraction due to the entropy of the network junctions competes with the repulsion

between the fluctuating branches. Another relevant contribution to the free energy arises from occur-

rence of “dead-ends” in the network. Since the aforementioned interactions are all purely geometrical

the thermodynamic behavior is universal, in accord with experiment [43]. Indeed, material specific in-

teractions may cause slight deviations from universality in the two systems studied here, nevertheless

the substantial structural and thermodynamic features remain common to both systems.

Microemulsions

The large-scale topology of the network is characterized by the typical distance, L, between the 3-fold

junctions which is governed by the translational entropy of the junctions. Within the microemulsion

network one can identify an additional local length scale, the radius of the cylinders, R, that is gov-

erned by the curvature energy of the amphiphile interface. Our theory traces the progression of the

microstructure from the curvature-governed, dilute network, LÀ R, to the strong fluctuation regime,

where the junction defects proliferate. Consequently, the typical distance between junctions becomes

comparable with their size, L ∼ R, and they form a dense sponge. We have explained the microemulsion
thermodynamics as the outcome of the simultaneous action of two distinct mechanisms: The large-scale,

global network statistics and the local curvature energy [56].

Topological transitions — . Our theory predicts a series of topological transitions with changing spon-

taneous curvature, c0: At high spontaneous curvature the stable phase is of spherical globules. As

c0 decreases, the microemulsion evolves from spherical globules to long cylinders that subsequently

interconnect by 3-fold junctions, leading to the formation of a bicontinuous network as the system ap-

proaches the symmetric region, c0 = 0 [56, 58]. The connectivity transition, from separate cylinders
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to the bicontinuous network, is governed by thermal fluctuations of the topological defects. We have

found that this transition occurs around the line where the junction and end-cap densities are equal.

This theoretical prediction for the topological transition, spheres → spheres + cylinders → cylinders

→ network (Fig.1 Chap. 3), was recently substantiated by direct cryo-TEM measurements of non-ionic

microemulsion [57].

Phase instabilities and reentrance — . Within the fluctuating network model we have identified two

distinct phase instabilities corresponding to the local and global contributions to the free energy: In the

emulsification failure instability [48] it is the local curvature energy that is optimized at a particular

globule size (related to the oil, water and amphiphile volume fractions) and is characterized by the

rejection of an excess phase. By rejecting the excess phase, the microemulsion tunes the radius of the

cylinders to minimize their curvature energy. Since the local energy is not sensitive to connectivity, we

suggested that the emulsification failure observed in disconnected globules [103] also occurs in networks,

in accord with experiment [57]. Apart from this local instability, the bicontinuous network exhibits a

unique instability which results directly from the fluctuations of the junctions. Due to the connectivity

of the network, these fluctuations lead to a polydispersity of the lengths of the cylindrical branches;

when the resulting effective attraction of the network, −ρ ∼ −φ3/2e−², overcomes the excluded volume
repulsion between the branches, the network becomes unstable to phase separation.

The reentrant phase separation loops and the subsequent 3-phase coexistence are direct consequences

of the non-monotonic dependence of the junction energy on the cylinder radius. The curvature energy of

the junction exhibits a minimal value at an optimal radius, R∗, which corresponds to a steep maximum of

the attraction [58] and to the strongest tendency to phase separate. If this maximal attraction exceeds a

critical value, the microemulsion phase separates into two networks of the same cylindrical radius which

differ in the density of junctions, as verified by experiment [57]. For either larger radii or smaller radii

than R∗ the attraction may become less than its critical value and the system becomes single phase,

which is the origin of the closed loop. In the phase diagram this global instability is manifested by the

appearance of a 2-phase coexistence loop bounded by two critical points (Fig. 1 Chap. 2).

As the spontaneous curvature is decreased, the loops expand until cylinder radius increase and the

networks become unstable to emulsification failure, in which the system rejects an additional excess

phase. The consequent 3-phase coexistence between two microemulsion networks, dense and dilute,

together with an excess phase, signifies the simultaneous occurrence of both global and local instabilities.

The resulting scaling laws are in good agreement with the universal phase-diagrams [50, 51] in both

the 2-phase and 3-phase temperature regimes (Fig. 3 Chap. 2). The source of this universality is purely

geometrical; it is the connectivity of the microemulsion network that provides an inherent, material

independent, topological mechanism for attraction. Recent cryo-TEM experiments proved our prediction

that indeed the coexisting phases are two microemulsion networks in the closed loop, accompanied by

an excess phase in the 3-phase region (see Fig. 3 Chap. 4).
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Interfacial tension — . The network model provides insight into the physics underlying the microemul-

sion ultra-low tension. We have found that the interfacial tension between a microemulsion network and

an excess phase may be explained, and easily calculated as the free energy per unit area required to

unfold a segment of the fluctuating network to a planar monolayer. For large spontaneous curvature,

c0, the dominant contribution to the microemulsion free energy is the elastic energy of the flattened

interface due to the difference between its curvature energy and the optimal value at the network. This

scales like c20 and therefore vanishes at the symmetric point c0 = 0. In this strong fluctuation regime an

additional contribution due to the loss of network entropy determines the finite, ultra-low value of the

tension. The universal, theoretical prediction of the interfacial tension between a network and its excess

phase (Fig. 2 3) were found to be in good agreement with the experimental data collapse of Sottmann

and Strey [50].

In another scenario, when the two coexisting phases are both networks, the corresponding interface is

a continuous transition layer separating regions where the branches have the same radius but their local

density (or the density of junctions) differs. We have treated this case within a mean field theory and

found that the consequent balance of the three surface forces (between the two networks and between

each network and the mutual excess phase) leads to the wetting transition that was measured close to

the appearance of the 3- phase coexistence [38, 55].

Shape and energy topological of defects — . As mentioned above, a connected network forms when

the number of junctions exceeds the number of end-caps (Fig. 7.2). This transition occurs when the

curvature energies of both defects are approximately equal. An accurate estimate of the energies is

therefore a crucial ingredient of our theory. The curvature energy of these two types of defects includes

two contributions: (i) A topological invariant proportional to the number of “handles” in the system

which is exactly the difference between the number of junctions and end-caps ρ3− ρ1; the junction and

the end-cap therefore have opposite topological contributions . (ii) A contribution due to the deviation

of the mean curvature of the amphiphilic surface from its preferred value, the spontaneous curvature,

c0. To optimize this shape-dependent part of the defect curvature energy, we have used a numerical

minimization code [102] and compared the results with a simplified analytical approximation. We have

found that junctions are preferred at low values of the spontaneous curvature due to their flat lamellar

core, while end-caps are preferred at larger c0 due to their curved spherical cap (Fig. 2 Chap. 5). The

cross over between these two regimes defines the cylinder → network transition line [58].



7.1 Summary of Theory and Results 51

Dipolar Fluids

Liquid-gas transition — . Our work suggests an alternative mechanism for liquid-gas transition in

dipolar systems even in the absence of any extrinsic non-dipolar interactions. The basic components of

our model are not the dipolar spheres themselves but the ensemble of self-assembling chains that they

form [84]. This approach allows us to focus on the many-body, large-scale features of the system that

are inaccessible to “microscopic” treatments. We suggest that the same topologically induced attraction

responsible for phase separation in microemulsions can lead to a to liquid-gas transition in dipolar fluids.

We have found that in zero external magnetic field, 3-fold junctions have defect energies that are lower

than those of the end-caps and the dipolar chains therefore tend to form networks. This difference in

energy increases as the particles become more anisotropic (e.g. sphero-cylinders [96, 97]). There is some

preliminary evidence for branched structures from simulations and experimental studies of ferrofluids [93,

94, 95]. The attraction and phase separation in our network formalism are not related to the individual

dipolar spheres, but rather to the topological defects of the chains — the network junctions. The proposed

phase separation, which is driven by effective attraction within the fluctuating networks results in an

equilibrium between two dipolar networks with differing density of junction points. Simulation studies

of dipolar fluids in the low-temperature, dilute regime encounter severe numerical difficulties due the

strongly collective nature of the thermal fluctuations which imposes very long relaxation times. Despite

these difficulties, recent studies [89] has found some preliminary evidence supporting our suggestion that

junction attraction is indeed the mechanism underlying the liquid-gas transition of dipolar systems.

Reentrant phase separation — . As mentioned above, the evasive liquid-gas transition of dipolar hard

spheres is difficult to observe due to the small scales of density and free energy scales and the long

relaxation times that stem from the anisotropic chaining (in our network picture the relevant param-

eters are the dilute junction density and entropy) [73]-[84]. However, one can overcome the strong

anisotropy by relaxing the spherical symmetry using sphero-cylindrical particles. In this system, the

degree of anisotropy of the nearest-neighbor interaction can be tuned by varying the aspect ratio of

the sphero-cylinders. As a result, the sphero-cylinder fluid exhibits an optimal aspect ratio where the

energy cost of a junction is minimal. Around this optimal point, the junctions proliferate, their attrac-

tive interaction is amplified and the resulting liquid-gas transition is more easily observed (Fig. 7.1).

This is analogous to the optimal, tunable cylinder radius of the microemulsion network. Similarly, our

theory reproduces reentrant liquid-gas separation regions in the phase diagram; these same “islands”

were observed in recent numerical simulations [96, 97]. Motivated by this deep analogy between mi-

croemulsions and dipolar fluids, we suggest that the physical features mentioned above, the formation

of a fluctuating network with its effective attraction and the resulting phase separation, are generic to

linearly aggregating systems and may be a key to the understanding of other basic physical features

such as rheology and scattering.
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FIGURE 7.1. Dipolar two-phase coexistence “islands” – (a) The vapor-liquid coexistence curve for the
dipolar hard sphero-cylinders of aspect ratio L/D = 1/4, obtained from Monte-Carlo simulations of McGrother
and Jackson [96]. (b) The effect of the aspect ratio on the densities of the coexisting vapor and liquid phases for
a fixed temperature of T ∗ = 0.12 (Note the similarity to the closed loops in the microemulsion system).
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7.2 Conclusions

Our theory predicts that linearly aggregating systems, such as microemulsions or dipolar fluids, may

self-assemble to form large-scale fluctuating networks (Figs. 1.2,1.3). This approach focuses on the

topologically induced interactions within such networks and provides a unified understanding of both

structure and thermodynamics over wide regions in the phase diagram. The junctions that connect the

linear branches of the network may be considered as topological defects. The energetically favorable

state of the amphiphile molecules or dipolar particles is one of chains or cylinders (the branches of the

network). The formation of topological defects costs energy (curvature energy in the case of microemul-

sion or dipole interaction in dipolar fluids), while their presence increases the entropy of the system. It

is exactly this interplay between the defect (i.e. the junction) energy and the network configurational

entropy that determines the network topology.

Due to its universal, topological character, the fluctuating network model may be applied to various

systems of different microscopic interactions. Our current work on dipolar fluids suggests that con-

cepts and results derived for microemulsion systems can be generalized to other kinds self-assembling

networks. The deep analogy between dipolar fluids and microemulsions, two systems of very different

microscopic interactions, motivates us to suggest that these thermodynamic and structural features are

generic to linearly aggregating systems and may therefore shed light on the basic properties of polar and

network-forming fluids. Dipolar chaining at the single-molecule level was recently demonstrated by the

observation of cyanide (HCN) chains in superfluid helium [105]. Similar linear and cyclic structures of

small water clusters, connected by hydrogen bonds have been predicted by ab initio molecular calcula-

tions [106] and later have been spectroscopically verified [107]. The unusual thermodynamic features of

water, such as the well-known density maximum at 4oC [108], are attributed to the network formed by

hydrogen bonds [109]. In addition, chaining and branching by dipolar forces or hydrogen bonds strongly

modifies the nucleation of anisotropic fluids, leading to scaling laws that deviate off the predictions of

classical, isotropic nucleation theory [110].

Another area that is worthy of further study are binary micellar solutions. Drye and Cates [98] have

predicted that micellar solutions, under certain conditions of concentration, temperature and salinity,

may form large-scale network, in accord with cryo-TEMmeasurements [111]. A recent set of experiments

Bernheim-Grosswasser, Talmon and Wachtel has found direct evidence for the existence of micellar

C12E5- in-water networks close to the lower critical point, which might relate the observed criticality to

the network-induced criticality of microemulsions [112]. Similar network-induced mechanisms may play

a role in the phase transitions observed in physical gels [113].

Formulating the self-assembling network model as a Heisenberg spin system with n→ 0 components

provides a more rigorous vehicle to deeply explore properties of amphiphilic systems and dipolar fluids.

This approach, which yields a free energy [88] very similar to the result of mean-field Flory model [98], has



54 7. Summary and Outlook

FIGURE 7.2. Topological defects – The connectivity transition, as a threefold Y -like junction forms from
an end-cap. The theoretical shape of the junction, as calculated by numerical minimization, has a lamellar core,
while the cylinder terminates with an enlarged spherical end cap (top). This prediction was verified by recent
cryo-TEM measurements of Bernheim-Grosswasser and Talmon (bottom).
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been recently used to calculate non-equilibrium properties of microemulsions, especially the correlation

functions and the consequent scattering, S(q) curve [101]. The spin n→ 0 approach seems like a natural

candidate to treat the rheological properties of self-assembling networks, especially their viscoelastic

characteristics. Another major advantage of the spin model is its ability to treat dense, sponge-like

networks where junction-junction correlation and excluded-volume interactions are important. A main

goal of this study is prediction of the evolution of the typical “sponge-peak” in the scattering curve as

the sponge is diluted into a low-density network [101].

The spin model might be fruitful in the study of the field responsive properties of dipolar fluids

[59, 60, 70], especially the non-linear dependence of the shear and the yield-strength of magneto- and

electro-rheological fluids on the field magnitude [114]. Another related open question is the nature of

the mechanism leading to the field-induced phase separation of dipolar fluids [115, 116].
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