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Living information is carried by molecular channels
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“Living systems”

I. Self-replicating information 

processors

II. Evolve collectively.

III. Made of molecules.

• Generic properties of molecular

channels subject to evolution?

• Information theory approach?

• Other biological information channels.

Environment



Outline – Information in Biology

• Information in Biology

– Concept of information is found in many living systems: 

DNA, signaling, neuron, ribosomes, evolution.

– Goals: (1) Formalize and quantify biological information. 

(2) Application to various biological systems.

(3) Looking for common principles. 

I. Information and Statistical Mechanics: 

Shannon’s information theory and its relation to statistical mechanics.

II. Overview: 

Living systems as information sources, channels and processors.

III. Molecular information and noise.  

IV. Neural networks and coding theory.

V. Population dynamics, social interaction and sensing.
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I. Basics of Information Theory

(Shannon)

4



Shannon’s Information theory

• Information theory: a branch of applied math and electrical 

engineering. 

• Developed by Claude Elwood Shannon.

• Main results: fundamental limits on signal processing such as,

– How well data can be compressed? 

– What is the reliability of communicating signals?

• Numerous applications (besides communication eng.):

– Physics (stat mech), Math (statistical inference), linguistics, 

Computer science (cryptography, complexity), Economics (portfolio theory).

• The key quantity which measures information is entropy:

• Quantifies the uncertainty involved in predicting the value of a 

random variable (e.g., a coin flip or a die).

• What are the biological implications?
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Claude Elwood Shannon (1916-2001)

• 1937 master's thesis: A Symbolic Analysis of Relay and Switching 

Circuits. 

• 1940 Ph.D. thesis: An Algebra for Mandelian Genetics. 

• WWII (Bell labs)  works on cryptography and fire-control systems:

Data Smoothing and Prediction in Fire-Control Systems.

Communication theory of secrecy systems.

• 1948: Mathematical Theory of Communication.

• 1949: Sampling theory: Analog to digital. 

• 1951: Prediction and Entropy of Printed English.

• 1950: Shannon’s mouse: 

1st artificial learning machine.

• 1950: Programming a Computer for Playing Chess.

• 1960: 1st wearable computer, Las Vegas. 
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A Mathematical Theory of Communication

• Shannon’s seminal paper: "A Mathematical Theory of Communication".

Bell System Technical Journal 27 (3): 379–423 (1948).

• Basic scheme of communication:

– Information source produces messages.

– Transmitter converts message to signal. 

– Channel conveys the signal with Noise.

– Receiver transforms the signal back into the message. 

– Destination: machine, person, organism receiving the message.

• Introduces information entropy measured in bits. 
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What is information?

"The fundamental problem of communication is that of reproducing at one point, 

either exactly or approximately, a message selected at another point."

• Engineering perspective –

– How to make good transmission channels

– Problem with telegraph lines,

• Define information as  measure for the “surprise”

– If a binary channel transmits only 1’s 

there is no information (no surprise).

– If the channel transmits 0’s and 1’s 

with equal probability – max. information. 
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Intuition: 20 questions game

• Try to guess the object from:

{barrel, cat, dog, ball, fish, box, building}.

• First strategy: wild guess.
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Intuition: 20 questions game

• Optimal  strategy: equalized tree

• Information = # of yes/no questions in an optimal tree. 
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Introducing the bit

• If I have a (equal) choice between two alternatives the information is:

I=1 bit = log2(#Alternatives) 

1 bit =
Harry Nyquist (1924):

Certain Factors Affecting Telegraph Speed

Example: How many bits are in a genome of length N?
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Information from Shannon’s axioms

• Shannon showed that the only function that obeys certain 

natural postulates is

(up to proportion constant).

• Example : if X is uniformly distributed over 128 outcomes

• Example: very uneven coin shows head only 1 in 1024 times 
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Entropy of a Binary Channel 
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Why call it entropy?

• Shannon discussed this problem with John von Neumann:

“My greatest concern was what to call it. I thought of calling it

‘information’, but the word was overly used, so I decided to call it

‘uncertainty’. When I discussed it with John von Neumann, he had a

better idea. Von Neumann told me, ‘You should call it entropy, for two

reasons. In the first place your uncertainty function has been used in

statistical mechanics under that name, so it already has a name. In the

second place, and more important, nobody knows what entropy really is,

so in a debate you will always have the advantage. “

M. Tribus, E.C. McIrvine, “Energy and information”, Scientific American, 224 

(1971).
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Shannon Entropy and Statistical Mechanics
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I. Maxwell’s Demon

• Entropy in statistical mechanics: measure of uncertainty of a

system after specifying its macroscopic observables such as

temperature and pressure.

• Given macroscopic variables, entropy measures the degree of

spreading probability over different possible states.

• Boltzmann’ famous formula:
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The second law of thermodynamics

• The second law of thermodynamics:

In general, the total entropy of a system

isolated from its environment, will tend not to decrease.

• Consequences:

(i) heat will not flow from a colder body to a hotter body without work.

(ii) No perpetuum mobile: One cannot produce net work from a single

temperature reservoir (production of net work requires flow of heat from a

hotter reservoir to a colder reservoir).
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Maxwell’s thought experiment

How to violate the Second Law?

- Container divided by an insulated wall.

- Door can be opened and closed by a demon.

- Demon opens the door to allow only "hot"

molecules of gas to flow to the favored side.

- One side heats up while other side cools

down: decreasing entropy. Breaking 2nd law!
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Solution: entropy = -information 

• Demon reduces the thermodynamic entropy of a system using

information about individual molecules (their direction)

• Landauer (1961) showed that the demon must increase TD entropy by

at least the amount of Shannon information he acquires and stores;

•  total thermodynamic entropy does not decrease!

• Landauer’s principle :

Any logically irreversible manipulation of information, such as the

erasure of a bit, must be accompanied by a corresponding

entropy increase in the information processing apparatus or its

environment.
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Maximum entropy inference (E. T. Jaynes)

Problem: Given partial knowledge e.g. the average value <X> of  X how 

should we assign probabilities to outcomes P(X)?

Answer: choose the probability distribution that maximizes the entropy 

(surprise) and is consistent with what we already know.

Example: given energies Ei and measurement <E> what is pi ?

Exercise: which dice X={1,2,3,4,5,6} gives <X>=3 ?
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Maximum Entropy principle relates 

thermodynamics and information 

At equilibrium,  

TD entropy = Shannon information needed to define the 

microscopic state of the system, given its macroscopic 

description. 

Gain in entropy always means loss of information about this state. 

Equivalently,  TD entropy = minimum number of yes/no questions 

needed to be answered in order to fully specify the microstate.
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Additional slides



Conditional probability

• Consider two random variables X,Y with a joint 

probability distribution P(X,Y)

– The joint entropy is H(X,Y)

– The mutual entropy is H(X,Y)-H(X)-H(Y)

– The conditional entropies are H(X|Y) and H(Y|X) 
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Joint entropy H(X,Y) measures total entropy of the joint distribution P(X,Y)
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Mutual entropy I(X;Y) measures correlations ( P(x,y)=P(x)P(y) => I=0 )

Conditional entropy H(X|Y) measures remaining uncertainty of X given Y



More information measures
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Whose entropy ?
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E. T. Jaynes



Kullback Leibler entropy
Problem: Suppose a random variable X is distributed 

according to P(X) but we expect it to be distributed 

according to Q(X). 

What is the level of our surprise?

Answer: The Kullback –Leibler divergence

Mutual information 

– Appears in many circumstances

• Example – Markov chains
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II. Second law in Markov chains

Random walk on a graph:.

– W is transition matrix :                     p(t+1)=Wp(t) 

– p* be the steady state solution:    Wp*=p* 

Theorem: distribution approaches steady-state   ∂t D(p||p*) <=0

Also  ∂tD(p||p*)=0 <=> p=p*

In other words: Markov dynamics dissipates any initial information.
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